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Introduction
Social Media Advertising

Social media advertising budgets have doubled worldwide from 2014 to
2016, reaching $30B, continuing with double-digit growth.
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Introduction
Word-of-mouth in Social Networks

nice ad! indeed!
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Introduction

Importance of Word-of-mouth Diffusion

Lexicon of modern marketers: word-of-mouth, social value, social whales,
influencers, online social strategy, etc.

The most influential element driving purchase decisions today is

WORD OF MOUTH.

Credibility B’ Profitability

Offline Online Service Experience
f believe of consumers would
offline (face to face or e P, s pay 15% or more to
wvoice to voice) word is highly credible. company becauss of recoive a superior
of mouth to be its customer service. customer experience.

highly credible.
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Introduction

Word-of-mouth Diffusion and Influencers

And experiencing directly right now ...
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Introduction
The Future of Online Marketing: Influencer Marketing

A new, highly effective, rapidly growing form of marketing on the social
Web.

R ,
INFLUENCER MARKETING

THE FUTURE OF MARKETING?
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Introduction
Influencer Marketing

Focus on influential people rather than the target market as a whole
(Wikipedia).

INFLUENCER MARKETING

vertising.com
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Influence Maximization Preliminaries

e Influence Maximization Preliminaries
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Influence Maximization Preliminaries

Influence Maximization (IM) [Kempe et al., 2003]

Objective

Given a promotion budget, maximize the influence spread in a social
network, by the word-of-mouth effect

@ Select k spread seeds in the social graph, given diffusion graph
G = (V, E) and a propagation model;

o Edges correspond to following relations, friendships, etc., in the social
media environment
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Influence Maximization Preliminaries
Influence Cascades

e N

Influence Cascades

Time-ordered sequence of records indicating when a user adopted the
product (was activated), starting a one or several persons
[Bakshy et al., 2011]
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Influence Maximization Preliminaries
IM Objective

@ Denoting o(S) the influence cascade starting from a set of seeds S,
the objective of IM is to solve the following problem:

argmax E[|o(/)(]
SCV,|S|<k

@ Measuring the size of an influence cascade depends on the
propagation model
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Influence Maximization Preliminaries

Independent Cascade (IC) Model [Kempe et al., 2003]

To each edge (u, v) from E, a probability p(u, v) is associated
@ at time 0 — activate seed s

@ node v activated at time t — influence is propagated at t + 1 to
neighbors v independently with probability p(u, v)

@ once a node is activated, it cannot be deactivated / reactivated
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Influence Maximization Preliminaries

Independent Cascade (IC) Model — Example

One seed selected
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Influence Maximization Preliminaries

Independent Cascade (IC) Model — Example

Spread step 1
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Influence Maximization Preliminaries

Independent Cascade (IC) Model — Example

Spread step 2
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Influence Maximization Preliminaries

Independent Cascade (IC) Model — Example

Spread step 3
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Influence Maximization Preliminaries

Independent Cascade (IC) Model — Example

Spread step 4
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Influence Maximization Preliminaries

Linear Threshold (LT) Model [Kempe et al., 2003]

Similar to IC, we have weights b(u, v) on each edge, but also a threshold
0(v) € [0, 1] for each node. The LT process is as follows:

@ at time 0 — activate seed s,

@ at time t — all nodes active at t remain activated, and any node v is

activated if:
> b(v,w) = 6(v).
weN(v)
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Influence Maximization Preliminaries

Submodularity and Approximation [Nemhauser et al., 1978]

The IM problem is known to be NP-hard, for both IC and LT.

Both LT and IC models are examples of submodular set functions, i.e., they
respect:

Elo (SU{v}] - E[o(S)] = E[o(T U {v})] - E[o(T)],

for all subsets of seeds SC T C V.

Submodular Set Function Optimization

The optimization problem is an instance of submodular set function
optimization, known to give constant 1 — 1/e approximation algorithm via
the greedy algorithm.
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Influence Maximization Preliminaries
The Greedy Algorithm

ALGORITHM 1: - Greedy Submodular Maximization

Input: Graph G(V/, E), spread function o, budget k
1: Initialization: set S = ()
2. fort=1,...,k do
3:  Choose v; = argmax, ¢\ s E[0(S U {v})]
4;  Update S=SU{wv}
5
6

: end for
. return S
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Influence Maximization Preliminaries

Adaptive Stochastic

Optimization [Golovin and Krause, 2011]

@ The objective of Adaptive Influence Maximization:

In practical situations, the model is known but the parameters - p(u, v) andJ
6 — are not.

The model needs to be learned adaptively and updated from priors — a case
of Adaptive Optimization

21 / 147
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Influence Maximization Preliminaries

Adaptivity [Golovin and Krause, 2011]

@ ¢ : & — O realization of the influence graph
o Partial realization v C £ x O
e Domain: ¢p C & x O — set of nodes that are observed to be active
through v
e 1 consistent with ¢: ¢ ~ 1
o 1 a sub-realisation of ¢’ (¢ < ') if ¢ C o
e Adaptive policy: mapping 7w from partial realizations to nodes.
o we write 7(¢)) for the node seeded by m under partial realization

o seeding () leads to partial realization ¢/ = ¢ U (7(¢), ¢(7(v))))

Adaptive IM optimization problem

Discover policy * such that:

7 € argmax fo, = Eg[f(E(7,®),P)] st |E(m, o) < k,V¢

where E(m,$) C V represents the seed nodes that have been selected
following policy 7 under realization ¢
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Influence Maximization Preliminaries

Adaptive Monotonicity and Submodularity

Definition: Expected Marginal Gain
The conditional expected marginal benefit of v € V, conditioned on
partial realization %, is given as:

Ar(v[i) 2 Eg [f(dom(1) U {v}, @) ~ F(dom(y), @)@ ~ 0.

Definition: Adaptive Monotonicity and Submodularity
f is adaptive monotone iff, for all v € V and ¢ such that P(® ~ ) > 0,
we have:

Af(v]y) >0

f is adaptive submodular iff, for all v € V' \ dom(v') and 1) C ¢/, we
have:

Ar(vi) = Ar(v]) |
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Influence Maximization Preliminaries

Adaptive Viral Marketing [Golovin and Krause, 2011]

2l S, i e

&\ initial target for
* marketing promotion
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° . influenced
T " w*m at time k
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1 uninfluenced
° v status unknown
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Edge feedback model under IC propagation: given u, the realization ¢(u)
encodes each edge as live, dead, or unknown
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Influence Maximization Preliminaries

Why Adaptive Influence Maximisation?

(a) Graph network (b) True world at time t = 2

Non-Adaptive Influence Maximisation
o Seed set: S = {v,w}

o Total number of influenced nodes: 2

Adaptive Influence Maximisation
o Seed set: S = {v,u}

o Total number of influenced nodes: 3
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Influence Maximization Preliminaries
Adaptive Greedy

ALGORITHM 2: - Adaptive Greedy

Input: Graph G(V, E), distribution p(¢) and utility function f, budget k
1: Initialization: set S =0, ¢ = ()

2: fort=1,..., kdo

3:  Choose v; = argmax,cg\; A(e[y) = E[f(SU{v}, @) — £(S,2)|® ~ ¥]
4;  Update S=SU{v}

5:  Observe @(v;)
6
7
8

Update ¢ = 9 U {(ve, &(v¢))}
: end for
. return S
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Influence Maximization Preliminaries
Adaptive Greedy

Since in the IC model with full-adoption feedback the influence function is
adaptive monotone and adaptive submodular, the adaptive greedy
algorithm is a (1 — %) approximation of the adaptive optimal policy.
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The Multi-Armed Bandit View

© The Multi-Armed Bandit View
o Edge Feedback
@ Node Feedback
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The Multi-Armed Bandit View

The Multi-Armed Bandit View

Another way to see the problem is to consider that each node is an arm in
a multi-armed bandit environment.

Setting:
e m arms each having random variable X; (reward for arm i) having
expectation p; € [0, 1]
@ arms are “pulled” in T rounds, giving reward R;(t)
@ the measure of interest for multi-armed bandits algorithms is the
regret Ry, i.e., the difference between always choosing the optimal arm
(X) and the given algorithm:

> R

i=1

t

> R()

i=1

Reg, =E —E

Huge literature on bandit algorithms, regret bounds in various settings
(stochastic, adversarial, linear, combinatorial)
[Lattimore and Szepesvari, 2019]
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The Multi-Armed Bandit View
Setting and Bandit Feedback

Learn the set of “best influencers” in a social network by repeatedly
interacting with it, by online IM campaigns.

Why MAB: may begin with no knowledge, at each step choose seeds that
improve our knowledge (explore) or seeds that yield better spread.

o full-bandit feedback: only the number of activated nodes is revealed
after each IM run

e edge semi-bandit feedback: all live edges are revealed (as in
[Lei et al., 2015, Vaswani and Lakshmanan, 2016])

@ node semi-bandit feedback: the activated nodes are revealed (as in
[Vaswani and Lakshmanan, 2016, Lagrée et al., 2017,
Lagrée et al., 2018])
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The Multi-Armed Bandit View

Node-Level Feedback vs. Edge-Level Feedback

(Full) edge-level feedback

After a node (batch) is seeded, we can observe the status of each edge
exiting an active node

(Full) node-level feedback

After a node (batch) is seeded, we can observe the status of each node
(active / inactive)
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The Multi-Armed Bandit View

Node-Level Feedback vs. Edge-Level Feedback

(Full) edge-level feedback

After a node (batch) is seeded, we can observe the status of each edge
exiting an active node

© Most of the literature relies on this kind of feedback
© May be realistic in micro-blogging scenarios (tweet / retweet)

© Not very realistic in many other scenarios (e.g., purchase, share, like)

v

(Full) node-level feedback

After a node (batch) is seeded, we can observe the status of each node
(active / inactive)
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The Multi-Armed Bandit View

Node-Level Feedback vs. Edge-Level Feedback

(Full) edge-level feedback

After a node (batch) is seeded, we can observe the status of each edge
exiting an active node

© Most of the literature relies on this kind of feedback
© May be realistic in micro-blogging scenarios (tweet / retweet)

© Not very realistic in many other scenarios (e.g., purchase, share, like)

v

(Full) node-level feedback

After a node (batch) is seeded, we can observe the status of each node
(active / inactive)

© Realistic for most scenarios, more general

© Less studied in the literature (leads to credit assignment problems)
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The Multi-Armed Bandit View Edge Feedback

© The Multi-Armed Bandit View
o Edge Feedback
@ Node Feedback

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis Adaptive Influence Maximization 32 / 147



The Multi-Armed Bandit View Edge Feedback

Combinatorial Multi-Armed Bandits

(CMAB) [Chen et al., 2013]

In each round, a super-arm consisting of a subset of the m arms S C 2™ is

selected (combinatorial)
Then the outcomes of all arms in S are revealed (in some cases, the

outcomes of some other arms are revealed)

The reward of a super-arm Rs; depends only on the expected reward vector
w=(u1,...,4m) and the arms in S

No access to the “real world” but to an oracle depending on p (or an
estimation thereof); we assume it is an («, 3)-approximation oracle

> Ru(s,-)]

i=1

Reg, o 5(t) =t -a-B-opt, —E
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The Multi-Armed Bandit View Edge Feedback

CUCB Algorithm [Chen et al., 2013]

ALGORITHM 3: - CUCB

Input: Arms [m], Oracle algorithm
1: Maintain T; — total number of times arm i has been played, the estimated
mean [i;
2: For each arm i, play an arbitrary super-arm S € S such that i € S and
update T; and ji;
3:t<m
4: while true do
5 t—t+1
6: Set each f; = fi; + 32%
7 S = Oracle(fi1, - - -, fim)
8 Play S and update each T; and ji;
9: end while

Based on the UCB (Upper Confidence Bound) algorithm — “optimism in
the face of uncertainty”
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The Multi-Armed Bandit View Edge Feedback

CMAB and Influence Maximization [Chen et al., 2013]

Applying to influence maximization:

@ arms are the edges in the graph G(V/, E) having expected probability
Puv

@ the super-arm is a set of edges outgoing from at most k nodes

@ the edges in the super-arm reveal if they are activated; but also other
edges can reveal their outcome due to the influence spread — edge
feedback

@ the oracle is the classic IM algorithm using the estimated fi; it is an
(1—1/e—¢,1—1/|E|)-approximation

CUCB Regret for Influence Maximization
The CUCB regret is bounded by:

12V2E2InT 2
Reg(T) < Z —— <2 + 1) E Amax
i€E,Al . >0 i

min
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The Multi-Armed Bandit View Edge Feedback

IMLinUCB: a LinUCB-like Algorithm [Wen et al., 2017]

IC semi-bandit algorithm (ICSB) - edge semi-bandit feedback

Known diffusion graph, unknown activation probabilities w(e), but a linear
generalisation: for each edge e there exists a d-dimensional known feature
vector x, s.t. w(e) is well approximated by x] 6%, where 6* € R9 is an
unknown coefficient vector that must be learned.

ALGORITHM 4: IMLinUCB: Influence Maximisation Linear UCB

Input: G, k, ORACLE, feature vector x.'s, parameters o,c > 0
1: Initialization: By < 0 € RY My « I € R¥*¢
2: fort=1,2,...,ndo

3: Be_1 o_thillBt_h Ue(e) + Proj[OJ] (xeét_l +cy/xe M;llxe) ,Vee E

4:  choose S; € ORACLE(G, k, U;), and observe the edge-level semi-bandit feedback
5: update statistics:

6: (a) Initialize: My < M_1 and B; + B:—1

7 (b) for all observed e € E, update M; < M; + 0 2xex. , Bt < B: + xew:(e)
8: end for

Note: w/o features (tabular case) it reduces to CUCB [Chen et al., 2013].
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The Multi-Armed Bandit View Edge Feedback

Regret Analysis

@ Regret: accumulated loss in reward (spread) because of the lack of
knowledge of the activation probabilities.

o 7-scaled regret: R = f(S°Pt) — %f(St): e.g., 1 = ay, when the
offline IM oracle is an («, ) approximation

ReY < O (V1= K 1€13 v/ (o))
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The Multi-Armed Bandit View Edge Feedback

Experiments - Comparison with CUCB

Facebook graph, |V| = 0.3k, |E| = 5k, comparing with optimal
(full-knowledge) strategy, IM oracle is TIM, k = 5000, d = 10

4B
55 x10
= =CUCB
= |MLInUCB with d=10 I
-— 2 I - -
© -
— -
oy P
o 1.5 P
Q ’
'g /7
= ’
IS ’,
= ’
© ’
05,
/
0 1 1 L L I
0 1000 2000 3000 4000 5000

Number of Rounds

(b) Subgraph of Facebook network
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The Multi-Armed Bandit View Edge Feedback

Experimental Study of CMAB: Influence Maximization With

Bandits [Vaswani and Lakshmanan, 2015]

Edge feedback: Same setting as [Chen et al., 2013],
Node feedback: challenge is updating the mean estimate for the activation
probability of each edge, as any of the active parents may be responsible
for activating a given node.
@ MLE-based approach: similar to learning offline, from cascades
(timestamped activations)
o frequentist approach: assuming low influence probabilities, hence few
active parents, chose for attribution one parent randomly
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The Multi-Armed Bandit View Edge Feedback

Generic CMAB

ALGORITHM 5: CMAB framework for IM
Input: G, k, feedback mechanism M, algorithm A
1: Initialize
T, =0,Vi
IS-EXPLOIT is a boolean set by alg A
if IS-EXPLOIT then
Es = EXPLOIT(G, {2, O, k)
else
Es = EXPLORE(G, k)
end if
: Play the superarm Es, and observe the diffusion cascade ¢
7 = UPDATE(c, M)

CoNaRrwd

._.
e

@ instantiated with CUCB, e-greedy, Thompson Sampling, pure
exploitation.
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The Multi-Armed Bandit View Edge Feedback

Node Feedback Experiments - Flixster Example

[Vaswani and Lakshmanan, 2015]

Flixster graph, |V| = 29k, |€] = 300k, WIC activation scores

Averag? Regret vs IRc;unds )

== EG-NLF
== EG-NLML -
== TSNLF

== TS-NLML

2500 == PENLF B

B 45— PE-NLML

& 2000} == HIGH-DEGREE | .
©

)

©

©

2

2

T T T T T
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(a) Flixster
Note: CUCB omitted in the plot as it performs poorly, being biased

towards exploring edges not triggered often — low rate of regret decrease
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The Multi-Armed Bandit View Edge Feedback

Node- vs. Edge-Level Feedback

[Vaswani and Lakshmanan, 2015]

Flixster graph, |V| = 29k, |E] = 300k, WIC activation scores
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The Multi-Armed Bandit View Edge Feedback

Online Influence Maximization [Lei et al., 2015]

Online Influence Maximization (OIM) framework:

@ model the influence graph as having probabilities with priors on them,
e.g., p(u,v) ~ Beta(ayuy, Buv)

o for a budget of k x N seeds, run N rounds in which k seeds are
activated, and feedback is gathered

@ similar edge feedback to CMAB: a set of activated edges and the set
of edges failing to be activated
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The Multi-Armed Bandit View

Edge Feedback

OIM Framework [Lei et al., 2015]

y

Uncertain Influence Graph

Choose Seeds

Heuristic " seed
Nodes
Explore-Exploit (EE)

Real World
L

follow —follow
o

o

follow _ follow

Selection Phase

Update Graph |

g

Action Phase

Feedback

ALGORITHM 6: — OIM Framework

Input: trials N, budget k, uncertain influence graph G

1. A«

2: forn=1to N do
3 S, + Choose(G, k)
4 (An, F,) < RealWorld(S,)
5. A+ AUA,
6: Update(G,F,)

7: end for

8: return (S;),—1..n, A
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The Multi-Armed Bandit View Edge Feedback

OIM — Algorithms [Lei et al., 2015]

There are several ways to implement Choose in an explore-exploit manner:
@ c-greedy approaches: explore with € probability, exploit otherwise
@ Upper Confidence bounds on the edges’ distributions

@ Exponentiated Gradient in which explore probabilities are dynamically
updated
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The Multi-Armed Bandit View Edge Feedback

OIM — Updating the Model [Lei et al., 2015]

The model: the uncertain influence graphs modelled with (Beta)
distributions on its probabilities
Can update:

@ locally: e.g., using the conjugate prior properties of the Beta
distribution:

Beta(auy, Buv) — Beta(awy + 1, Buv)

in case of successful edge activation

@ globally: assuming probabilities follow a global (in the graph)
distribution: regression / MLE based on all previous feedback
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The Multi-Armed Bandit View Edge Feedback

OIM — Results [Lei et al., 2015
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The Multi-Armed Bandit View = Node Feedback

© The Multi-Armed Bandit View
o Edge Feedback
@ Node Feedback
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The Multi-Armed Bandit View = Node Feedback

Online Influencer

Marketing [Lagrée et al., 2017, Lagrée et al., 2018]

Online and adaptive influence maximization:

@ Influence campaign: multiple consecutive rounds spreading the same
type of information

@ Goal is to reach / activate as many users as possible

@ Assuming a known set of spread seed candidates (the influencers), but
no diffusion model

In each round:
@ select some influencers from which a new spread starts

o the diffusion happens, observe activated nodes, but not the diffusion
process itself

@ influencers may be re-seeded throughout a campaign
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The Multi-Armed Bandit View = Node Feedback

Influence Persistence

A campaign with multiple rounds, diffusing the same post or different posts
with the same semantics
@ people may pass along the information several times, but “adopting”
the concept rewards only once (e.g., in politics)
@ brand fanatics, e.g., Star Wars, Apple, etc
@ advertisement in users' feeds (e.g., Twitter), people may transfer / like
the content several times during the campaign

Persistence
A node can be activated several times at different trials, but it is counted

only once.
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The Multi-Armed Bandit View = Node Feedback

Motivation for

Directly motivated by influencer marketing

More realistic at many levels: no assumption regarding the diffusion
model, simple feedback, IM via influencers

Clear algorithmic interest: learn parameters on influencers (their
potential) instead of diffusion edges —> large scale

Independent influence campaigns with relatively short timespan
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The Multi-Armed Bandit View = Node Feedback

OIMP Formally [Lagrée et al., 2017, Lagrée et al., 2018]

[K] :={1,..., K}, set of influencers up for selection, N rounds, L
influencers to be selected at each round

@ Each influencer is connected to an unknown and potentially large base
(its support, Ax C V) of basic nodes

@ py(u): each basic node u has an unknown activation probability by
influencer k

@ Influence process: when influencer k is selected, each basic node from
Ay is sampled for activation

o Feedback: all activated basic nodes

@ Reward: all newly activated basic nodes

Objective : arg max E U S(1n)
InCIK || =LY1<n<N - |1y
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The Multi-Armed Bandit View = Node Feedback

OIMP Solution [Lagrée et al., 2018]

INFLUENCERS

Basic NODES

o Key difference w.r.t. classic MABs: no constant optimal seed set,
selection at one trial depends on previous activations; we must follow

an adaptive policy
@ Algorithm GT-UCB: explore-exploit strategy using the Good-Turing
estimator

e UCB-type algorithm: rely on upper confidence bounds on the
estimator of remaining spread potential of an influencer
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The Multi-Armed Bandit View = Node Feedback

Good-Turing Estimator

Main idea: how to estimate the remaining spread for an influencer without
knowing the model?

Good-Turing Estimator

Estimating the number of unique items left in a random process (e.g.,
species estimation, code breaking)

@ estimated as the frequency of items encountered only once — hapaxes

MO @ @
» @ O O @

O @
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The Multi-Armed Bandit View = Node Feedback

Applying Good-Turing to

OIMP [Lagrée et al., 2017, Lagrée et al., 2018]

For each influencer we need to estimate the remaining potential:
Ri(t) : Zn{mUs }
ucAg

In the case of OIMP, we use the Good-Turing estimator as the frequency of
nodes influenced only once:

I\

uEA I;ék

UCB index
We can plug this in a UCB algorithm by computing, for each influencer,

the index:

bi(t) = Ri(t) + (1 n f) Ak(t)log(4t) | log(4t)

nk(t) 3nk(t)
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The GT-UCB

Algorithm [Lagrée et al., 2017, Lagrée et al., 2018]

ALGORITHM 7: — GT-UCB (L =1)

Input: Set of influencers [K], time budget N
1: Initialization: play each influencer k € [K] once, observe the spread Sk 1, set
ng = 1

2. fort=K+1,...,Ndo

3:  Compute bi(t) for every influencer k

4:  Choose k(t) = arg max,¢[x] bk(t)

5:  Play influencer k(t) and observe spread S(t)

6:  Update statistics of influencer k(t): ni(t +1) = ny)(t) +1 and
Sk,nk(t) = 5(1’)

7. end for

8: return W
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The Multi-Armed Bandit View = Node Feedback

GT-UCB Theoretical Analysis [Lagrée et al., 2018]

Theorem: Good-Turing Deviation
With probability at least 1 —d, for A =" ., p(u) and

Bn = (1+ v2) /20840 | Log 4 the following holds:
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GT-UCB Waiting Time [Lagrée et al., 2018]

Waiting Time

Let Ak = >_,ca, P(u) denote the expected number of activations obtained
by the first call to influencer k. For o € (0,1), the waiting time Tycg(c)
of GT-UCB represents the round at which the remaining potential of each
influencer k is smaller than a\,. Formally,

TUCB(a) = min{t :Vk € [K], Rk(t) < oz)\k}.

Theorem: GT-UCB Waiting Time

Let A™Min = mingecik] Ak and let A™® := maxyc[k] Ak. Assuming that

AMn > 13, for any a € [Amm, 1], if we define 7% := T* (o — %) with

1
| \

probability at least 1 — )\max the following holds:

Tuce(a) < 7% + KA™ log(47* + 11KA™) + 2K.
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The Multi-Armed Bandit View

Node Feedback

OIMP Regret [Lagrée et al., 2018]
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The Multi-Armed Bandit View = Node Feedback

OIMP Execution Time [Lagrée et al., 2018]
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Model Independent IM [Vaswani et al., 2017]

@ Goal: wide applicability by an IM problem formulation based on
pairwise reachability probabilities (as in [Lagrée et al., 2018])

e all stochasticity in the diffusion model D encoded in a random diffusion
vector w — each diffusion has a corresponding w sampled from an
underlying distribution P

e online IM: marketer choses seed set S, nature samples w ~ P

e activated nodes in a diffusion are completely determined by the seed
set S (from a known graph) and D(w) (unknown)

@ Surrogate objective function: based on maximum reachability

@ Pairwise influence feedback: observe each node activation along with
the seed node responsible for it (note: weaker than edge-level
feedback)
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Surrogate Objective Function

o for any pair of nodes u, v, the pairwise reachability from u to v, pj; ,
is the probability that v is activated if u is the only seed node

o for a seed set S, (S, v, p*) = maxyes p}; , is the maximal pairwise
reachability from S to v 7

@ surrogate IM objective function:

f(S,p*) = Z(S, v, p*)(monotone and submodular)
vey

@ goal:

S = argmax (S, p*)
S

(shown to be bounded by below by 1/K wrt the optimal IM solution)
o finding S remains hard, greedy (1 — 1/e) approximation instead
@ given p* (or learning it online as in [Vaswani et al., 2017]), we can
obtain an approximate solution for the IM problem w/o knowing the
diffusion model
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Linear Generalisation

O(n?) parameters — O(dn) parameters

Linear generalisation: for each seed u and node v there exists two
d-dimensional feature vectors, x, (known) and 6}, (unknown) s.t. p*(u,v)
is well approximated by x| 0% (i.e., 65 € R? are the unknown coefficient

vectors that must be learned)
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Another LinUCB-like Algorithm

ALGORITHM 8: Diffusion Independent LinUCB (DILinUCB)
Input: G, C,oracleORACLE, target feature matrix X € R?*", parameters ¢, \,o > 0

1: Initialize: X, 0 <€ A4, by o + O,HAu,o «~ 0,Vv € V, and UCB py,,,Vu,v € V
2: fort=1,2,..., T do

3:  Choose S; < ORACLE(G, C, p)

4 for u € S do
5: Get pairwise influence feedback y,. ¢
6: bu,t < bu,t—1 + Xyu,t
7 Yut — Xy + o 2XxXXT
8 bue 25 by
9: Pu.v = Projy (Buex0) + Cl‘XVHEth] WVveV
10:  end for )
11:  foru ¢ S; do
12: bu,t = bu,t—l
13: Yyt =2ut1
14:  end for
15: end for
nT
2 g [dETlog(1+ x75) 1

RPY(T) < —n .
( )_pa /\log(l—i-%g) P
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The Multi-Armed Bandit View = Node Feedback

Experiments

Some notes:

@ reachability from a source to target nodes should be a smooth graph
function

@ also smoothness assumptions for source features ||6} — 6},||> should
be “small” if u; and w, are adjacent — Laplacian regularization)

10

164 [+ cuceam | --
TAB(0)
12| —4=1050

- 10,50)

Cumnulative Regret
Cumulative Regret

2000 3000 4000 5000 o H:I[D 20‘(1) ISC;CO ﬂ[;:)(] 5000
Number of rounds Number of rounds
(a) IC Model (b) LT Model
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The Full Knowledge Case

@ The Full Knowledge Case
o Full Feedback
@ Myopic Feedback
@ General Feedback
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The Full Knowledge Case

Full Feedback

Full feedback
Activating a seed node at time t, we observe the entire propagation in
graph
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The Full Knowledge Case
Full Feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph
© Utility function f is adaptive monotone and submodular

© Not very realistic model

®© Potentially huge delay
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The Full Knowledge Case  Full Feedback

@ The Full Knowledge Case
o Full Feedback
@ Myopic Feedback
@ General Feedback

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis Adaptive Influence Maximization 68 / 147



The Full Knowledge Case  Full Feedback

Adaptivity Revisited in [Vaswani and Lakshmanan, 2016]

Yy 1V — {0,1} realisation / network state of the influence graph,
i.e., set of active nodes at t

e adaptive policy: mapping 7 from network states v to (set of )
nodes (empty set included) under budget k

o we write m,(t;) for the node(s) seeded by my at ¢t + 1 under the
network state v; at time t

o seeding k(1)) leads to the network state ©¢11 = ¥ U {mx(v¢)}
o f(mk) denotes the spread achieved by 7, in a possible world
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Offline Policies [Vaswani and Lakshmanan, 2016]

Offline policies

Focus on offline policies, with the objective to maximise in average f ()
over some candidate possible worlds (the training set). (Note: simply says
we can sample possible worlds, as G is known, and we can design the
policy offline)

Adaptive IM Optimization Problem

Find the optimal 7y k such that the performance f(mop k) is maximised
in average (over the candidate possible worlds).

v

Equivalence node-level feedback / edge-level feedback

If the diffusion process is allowed to terminate after every seeding step,
node-level feedback is equivalent to edge-level feedback w.r.t. marginal
gain computation — the expected spread function remains adaptive
submodular and adaptive monotone.
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The Full Knowledge Case  Full Feedback

Main Results in [Vaswani and Lakshmanan, 2016]

How well mga « (greedy adaptive, sequential) and wgna  (greedy non
adaptive) may do compared to moa  (optimal adaptive, sequential) 7

Greedy approximations
o flmoa) 2 (1-e77) x f(monk)
o f(menak) > (1— %)2 x f(moak)
for v = (e—fl)2

Note: assuming perfect marginal gain computation.

|
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The Full Knowledge Case  Full Feedback

Experiments

@ 100 possible worlds, spread results averaged over them

e adaptive TIM (RR sets regenerated lazily / LR or eagerly / FR after
each seeding step)

Flixster: Average Spread vs Number of seeds Flixster: Runtime vs Number of seeds
5500 2500 T
5000 —
o° % 2000 ——Non-Adaptive
@ < —+— Adaptive-Sequential(FR)
g4500 § 1500 —e— Adaptive-Sequential(LR)
(2] »n
o 4000 £
<) =
© g 1000
2 3500 =
< S
3000 ~— Non-Adaptive x 500 "
y +— Adaptive-Sequential(FR)
2500 —a— Adaptive-Sequential(LR) 0 —
0 20 40 60 80 100 0 20 40 60 80 100

Number of seeds Number of seeds
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The Full Knowledge Case  Full Feedback

Adaptivity Gaps [Chen and Peng, 2019]

Key question: under full-adoption feedback, to what extent an adaptive
policy might outperform a non adaptive one 7

Adaptivity gap
For a graph G = (L, V, p), budget k, let OPTy(G, k) (resp. OPTa(G, k))
the spread of the optimal non-adaptive (resp. adaptive) policy. The
adaptivity gap is defined as follows:

o OPTA(G.K)
Pe.k OPTN(G, k)
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Upper Bounds

Theorem: in-arborescence

When the underline influence graph is an in-arborescence, the adaptivity
gap for the IM problem in the IC model with full adoption feedback is at

2e
most P

v

Theorem: out-arborescence

When the underline influence graph is an out-arborescence, the adaptivity
gap for the IM problem in the IC model with full adoption feedback is at
most 2.

v

Theorem: bipartite

When the underline influence graph is bipartite (one-directional), the
adaptivity gap for the IM problem in the IC model with full adoption
feedback is at most %
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Lower Bound

Theorem: bipartite

The adaptivity gap for the IM problem in the IC model with full adoption
feedback is at least _%5.

-1t 1-1n 1-1/t 1-11t 111t 114 1 1-n 111

Open question

Adaptivity gap upper bounds for general graphs under full-adoption
feedback.
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The Full Knowledge Case  Full Feedback

Effective Algorithms for Adaptive Influence Maximization

06 _Av)-02 . ) Pou
~" 04 - \1;) o 7 o T T o
e . (v / Y (v \Ti,) Vo
/ 027 Jos > [ & / 2
PR AT J / )
Q;i)‘—@ 4/ Y i,. 615)(,.«@\" (i-‘!(; Q,\ I\ . “7‘.@5 Q—f\)‘"
(a) A social network (b) Possible world wun (c) Possible world ws (d) Possible world w3

Figure: A social network and three of its possible worlds w ~ W

@ Select k seed nodes in r batches of equal size b = k/r

@ We observe the influence prop. in w for r rounds in total, once after
the selection of each batch

@ Our objective is to select r seed set 51, S,,...,S,, to maximize the
expected influence spread over the choices of w ~ W (see fig above)

o The full-feedback model is adopted
o If b=k, (i.e.,r =1), we resort to the standard IM task
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AdaptGreedy efficient algorithm [Han et al., 2018]

Given any non-adaptive IM algorithm able to identify a size-b seed set S;
for the it residue graph Gj, such that:

E[f6,(Si))] = (c — &)OPTp(Gy),

AdaptGreedy achieves a provable approximation guarantee represented by
&, where:

o E[fg,(Si)] is the expected spread of S; on G;
@ residue graph G; is generated by removing from G;_; those nodes that
are influenced by S;_1, with G; = G

@ OPT,(G;) is the maximum spread of any size-b seed set on G;
e c=1lifb=1and c =1—1/e otherwise
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ALGORITHM 9: AdaptGreedy

Input: G, k (budget) , r (number of batches)
Output: Seed set Sy, ..., S, (adaptively selected)

1: b < k/r (number of seeds selected at each round)
2 G+ G

3: if r == k then

4: c<+1

5: else

6: c«1—1/e

7: end if

8: fori=1tordo

9: ldentify a size-b seed set S; from G;, such that:

E[f6,(5i)] = (¢ — §)OPT(Gi)
10:  Observe influence of S; in G;
11:  Gjy1 < Remove all nodes from G; influenced by S;
12: end for
13: return Si,...,S,

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis Adaptive Influence Maximization 78 / 147



The Full Knowledge Case  Full Feedback

AdaptGreedy Performance Guarantees

Theorem

Let G be the set of all possible choices of G;. Let P[¢;|Gi, ..., Gi] be the
probability that S; achieves an approximation ratio of ¢ — &£; conditioned on
the event that the first i residue graphs are Gy, ..., G;, and

£=-3 Y (Pl Gl PG, G))

i=1 G1€0z1,...,G;€G;

Then, the approximation guarantees of AdaptGreedy is at least:

1—exp(¢—1), if b=1,
1—exp (§ -1+ %) , If otherwise

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis Adaptive Influence Maximization 79 / 147
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EPIC: IM with expected approximation

Reverse reachable sets (RR-sets)

An RR-set R of G is generated by:

@ First select a node v € V uniformly at random,

@ Then take the nodes that can reach v in a random graph generated by
independently removing each edge e € E with probability 1 — p(e)
Then, we get that:
E[fc(5)] = V| Covr(S)/IR|
N————

2FR(S)
where Covg(S) denotes the number of RR-sets in CR that overlaps S.

EPIC general framework

| A\

@ Start from a small number of RR-sets

@ lteratively increase the RR-set number until a satisfactory solution is
satisfied

\
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ALGORITHM 10: EPIC Algorithm
Input: G;j,¢;,0;, b
Output: Seed set S; (i batch)
1 vi1 = 6’7’13 = 2:'7:,2 = 4= ’1Y/+1’Y_Ii7/3
2 Y = (46*8)(1+A/’;:;1)(1+’Yi,2) In(3/5/)

3: Tmax_wo +|n( )) W= ’7|Og2<T§aX>-‘
Yo = 1+“‘98’)y(¢'2)| 3w

4
5. Generate a set Rl of W1 random RR sets
6: repeat

7. (Sj, Fr,(Si)) + MaxCover(Rq, b)

8 if ‘Rl‘ . FRl(Si) > ) then

9 Generate |R1| random RR sets in R,

10: Calculate Fr,(S;) of S; in R»

11: if ‘Rg‘ F’Rz( ) >V and FR1( ) < (1 +’yi,1)FR2(5i) then
12: return S;

13: end if

14:  end if

15: Ri=R1URsy
16: until |R1| > Thax
17: return S;
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ALGORITHM 11: MaxCover Algorithm

Input: A set R of random RR set, b

Output: S;, and the fraction of RR sets in R covered by S;
1: 5,' = @

2: fori=1tobdo

3: v € argmax,cy Covp(Si U {u}) — Covgr(Si)

4 S« S uU{v}

5

6

. end for
. return <5,,COVR(5,)/’R|>
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EPIC Performance Guarantees

Theorem
With a probability of at least 1 — §;, EPIC returns a seed set S; satisfying

E[fG;(Si)] Z (C — Ei)OPTb(G,')

for any G;. In addition, the expected time complexity of EPIC is

o <<b|0g(ni) + log <<:5L,>> (mi + ni)/€2>

where m; and n; are the numbers of nodes and edges of G;, respectively.
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The Full Knowledge Case

Full Feedback

Empirical Analysis: Running Time Vs. Seed and Batch size
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3 4
15/

u‘v“:‘#—v—e-vm

—6— IMM —F— D-SSA —A— AdaptIM-1 —g— AdaptIM-2

1 prunning time(109 - sec)

1 2 5 10 20 50500
batch size
(a) NetHEPT

7 5running time(10" - sec)

0 S
50 100200300400500
number of seeds k

(a) NetHEPT

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis

1 2 5 10 20 50500
batch size
(b) Epinions

5 5running time(10% - sec)

0| —8—8—8+t18

50 100200300 400500
number of seeds k

(b) Epinions

grunning time(107 - sec)

T 2 5 10 20 50500
batch size
(c) DBLP

1 zrunningrtimc:”lﬂ“ sec)

1 2 5 102050500
batch size
(d) LiveJournal

Running time vs. batch size

1 srunning time(10% - sec)

50 100200300400500
number of seeds k

(c) DBLP

1 prunning time(10%- sec)

4 grunning time(10? - sec)
3
15 A
0 ]
1 2 5 10 20 50500

batch size
(e) Orkut

grunning time(10° - sec)

50 100200300400500
number of seeds k

(d) LiveJournal

Running time vs. seed size

Adaptive Influence Maximization

50 100200300400 500
number of seeds k

(e) Orkut

84 / 147



The Full Knowledge Case

Full Feedback

Empirical Analysis: Spread Vs. Seed and Batch
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The Full Knowledge Case  Full Feedback

Full feedback Vs. Partial feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph

Partial feedback

Activating a seed node at time t, we observe the propagation in graph for d
time slots:

| A

A\
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The Full Knowledge Case  Full Feedback

Full feedback Vs. Partial feedback
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The Full Knowledge Case  Full Feedback

Full feedback Vs. Partial feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph
© Utility function f is adaptive monotone and submodular

® Not very realistic model

© Potentially huge delay

Partial feedback

Activating a seed node at time t, we observe the propagation in graph for d
time slots:

| A

Allows us to select to select seed nodes at any intermediate stage

© Utility function f is NOT adaptive submodular

\
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The Full Knowledge Case  Full Feedback

Adaptive IM with Partial Feedback [Yuan and Tang, 2017]

The next seed is selected iff the following condition is satisfied:

f(S‘w[r]) > o
VA Oyl —

where,
e « € [0,1]: control parameter
o «a = 1: full-feedback
o a = 0: zero-feedback (standard IM)
@ ty,: observations made at round r
@ O set of nodes whose activation probability is zero at round r.

The node with the maximum expected marginal gain given existing seeds S
and partial realization vy, is selected as seed node at each round:

v = arg max Af(U|¢[r])
ueV\S
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The Full Knowledge Case  Full Feedback

ALGORITHM 12: a-Greedy policy 7
Input: G,B,0<a<1
Output: S

1: S+ 0; r<0

2. v =argmax,c\\s Ar(ultr)

3: S%SU{V}; B+~ B-1

4: while B > 0 do

AL

6. if Aoy > « then

T V = argmax,c\\s Af(u|w[r])
8: S+ SU{v}; B+~ B-1

9: else

10: wait one time slot; update v,
11:  end if

12: end while
13: return S (final set of influenced nodes)
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The Full Knowledge Case  Full Feedback

Adaptive IM with Partial Feedback [Yuan and Tang, 2017]

The next seed is selected iff the following condition is satisfied:

f(SW}[r]) > o
’V \ O[r]‘ N
where,
e a € [0,1]: control parameter
o « = 1: full-feedback
o a = 0: zero-feedback (standard IM)
@ )y, : observations made at round r
@ Op: set of nodes whose activation probability is zero at round r.

Non-uniform cost

The node with the maximum expected marginal gain given existing seeds S
and partial realization vy, is selected as seed node at each round:

. Af(uwj[r])
Vv =argmax ———
ueV\S Cu
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The Full Knowledge Case  Full Feedback

ALGORITHM 13: a-Greedy policy with non-uniform cost =™
Input: G,B,0<a<1
Output: S

LS« 0 r«0

2 v = argmax,cyn s (”W[r])

3 S+ SU{v} B<—B—cv

4: while B > 0 do

)
6. if VO] > « then
7 V = argmaxX,cy\s M
if B—c¢, <0 then

: break
10: else
11 S+ Su{v};, B+ B-¢,
12: end if
13: else
14: wait one time slot; update
15:  end if

16: end while
17: return S (final set of influenced nodes)
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The Full Knowledge Case  Full Feedback

Adaptive IM with Partial Feedback Guarantees

Theorem: Performance Bound of 7“ (uniform cost)
The expected cascade of policy 7% under the IC model is bounded by:

fF(r4) > a (1 _ e*é> F(r).

Under full-feedback model (ov = 1), we get: f(7") > (1 —1/e) f(7*).
~63%

Theorem: Performance Bound of 7™ (non-uniform cost)

The expected cascade of policy 7" under the IC model is bounded by:

f(H”)Za(l—e % >f(7r ), whereEéma\;(cu.
uc

\
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The Full Knowledge Case  Full Feedback

Empirical analysis

(a)i=1 (b)i=2 (c)i=4 (d)i=8
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Experimental setup

o NetHEPT network (| V| = 15233, |E| = 62774)

e Edge influence probability is randomly assigned: / x {0.01,0.001}
@ Budget B ranges from 30 to 60

@ The cost of each node is randomly assigned from [1, 10]
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The Full Knowledge Case Myopic Feedback

@ The Full Knowledge Case
o Full Feedback
@ Myopic Feedback
@ General Feedback
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The Full Knowledge Case Myopic Feedback

Full Feedback Vs. Myopic Feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph

Myopic feedback

| \

Activating a seed node at time t, we only observe the status (active or not)
of the neighbors of the seed nodes at time t + 1

\
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The Full Knowledge Case Myopic Feedback

Full Feedback Vs. Myopic Feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph
© Utility function f is adaptive monotone and submodular

®© Not very realistic model

© Potentially huge delay

Myopic feedback

| \

Activating a seed node at time ¢, we only observe the status (active or not)
of the neighbors of the seed nodes at time t + 1
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The Full Knowledge Case Myopic Feedback

Full Feedback Vs. Myopic Feedback

Full feedback

Activating a seed node at time t, we observe the entire propagation in
graph
© Utility function f is adaptive monotone and submodular

®© Not very realistic model

© Potentially huge delay

| \

Myopic feedback

Activating a seed node at time ¢, we only observe the status (active or not)
of the neighbors of the seed nodes at time t + 1

Realistic model
© Utility function f is NOT adaptive submodular

\
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The Full Knowledge Case Myopic Feedback

Myopic Adaptive Influence Maximisation [Salha et al., 2018]

Modified utility function

Given a finite horizon T, the proposed utility function is defined as:

.
F(S,0) 2 oS, 9)l,
t=1

where 0+(S, ¢) represents the set of active nodes at time t.

Modified IC model

Each active node has multiple opportunities to influence its inactive
neighbors.
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The Full Knowledge Case Myopic Feedback

Layered Graph Representation - Gt

For seed set S (with time indices) and realization ¢, it holds that:

FQ(S7 ¢) = fgL (87 ¢)
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The Full Knowledge Case Myopic Feedback

Representation Analysis

Definition: Time function

Time function 7 : ¥ — {1,..., T} returns, for a particular ¢, the largest
time index from observed nodes and edges, and 1 if ) = ()

Definition: Marginal gain

The marginal gain of choosing v as a seed node, having observed 1
with 7 (1) = t, and for the ground truth realization ¢ of the network, is:

Ss(vIp) 2 fg(dom(v) U {ve}, ¢) — fg(dom(1)), ¢).
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The Full Knowledge Case Myopic Feedback

Representation Analysis

Lemma: Marginal gain

The marginal gain of choosing v as a seed node on G-, under partial
realization ¢ with 7 (¢) = t, is given by:

dp(v|ih) = fgu([Le N dom(y)] U {ve}, &) — fge(Le N dom(), §).

| A

Lemma: Submodularity property
@ For partial realizations 1) C ¢’ with T(¢) = T(¢') = t and any
v eV, we get d4(v|1p) > dg(v[Y)).
o For partial realizations ¢ C ¢ with T(¢) < T(¢’) and any
v e V\ dom(y'), we get dg(v]eh) > 1+ d4(v]Y').

v
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The Full Knowledge Case Myopic Feedback

Myopic Adaptive Greedy Strategy Guarantees

Optimization Problem:

7r*Eargmaxfavg(w)éE@[fg(E(w,@),@)] st. |E(m,¢)] < k,Vo.

Theorem: Performance Bound

Adaptive greedy policy 78 obtains at least (1 — 1/e) of the value of the
best policy for the AIM problem under the modified IC model with myopic
feedback: ) )
favg(78) > (1 — 1/€) fayg (™).
——

~63%
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The Full Knowledge Case Myopic Feedback

ALGORITHM 14: Myopic adaptive greedy policy
Input: G, T

L0, S0

2: fort=1to T do

3. Compute Ax(v[p),Vv € V\S

4:  Select v* € argmax Az(v|v)
veV\S

S+ SuU{v*}

Update v observing (one-step) myopic feedback
S + SUdom(v)

8: end for

9: return S (final set of influenced nodes)

N
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The Full Knowledge Case Myopic Feedback

Modified IC Hypotheses

Lemma: Utility function f under standard IC model

The utility function f is not adaptive submodular under the standard IC
model with myopic feedback.

Lemma: Non-Progressive Adaptive Submodular IM

Forcing active nodes to remain active throughout the process constitutes a
necessary condition to verify the adaptive submodularity property of:

i) fg in the modified IC model with myopic feedback;
ii) fg in the standard IC model with full-adoption feedback.
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The Full Knowledge Case Myopic Feedback

Empirical Results

Facebook 10°

Budget constraint k

Twitter

Budget constraint k Budget constraint k

—e— Myopic Adaptive Greedy Max degree —e— Centrality —+— Random —+— Non Adaptive Greedy
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The Full Knowledge Case Myopic Feedback

Adaptivity Gaps under myopic Feedback

[Peng and Chen, 2019]

Key question: under myopic feedback, to what extent an adaptive policy
might outperform a non adaptive one ?

Adaptivity gap

For all graphs G = (L, V, p), budgets k, let OPTy(G, k) (resp.
OPTA(G, k)) the spread of the optimal non-adaptive (resp. adaptive)
policy. The adaptivity gap is defined as follows:

OPTA(G, k)

PGk OPTN (G, k)
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The Full Knowledge Case Myopic Feedback
Adaptivity Gap: Lower and Upper Bounds
[Peng and Chen, 2019]

Theorem (Upper bound)

Under the IC model with myopic feedback, the adaptivity gap for the
influence maximization problem is at most 4.

Theorem (Lower bound)

Under the IC model with myopic feedback, the adaptivity gap for the

influence maximization problem is at least _*5.
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The Full Knowledge Case Myopic Feedback

Greedy vs. Optimal Adaptive Policy [Peng and Chen, 2019]

Theorem

Both greedy and adaptive greedy are 4(1 ) -approximate to the optimal
adaptive policy under the IC model with myopic feedback. (conjecture from
[Golovin and Krause, 2011])

Theorem

| A\

The approximation ratio for greedy and adaptive greedy is no better than

(:Jjﬁz ~ 0.606 w.r.t. the optimal adaptive policy under the IC model with

myopic feedback.

.

Note: 241 ~0.606 < (1 — 1)~ 0.632.

(e +1)

Under the IC model with myopic feedback the approximation ratio of
adaptive greedy is at most that of the non-adaptive greedy.
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The Full Knowledge Case = General Feedback

@ The Full Knowledge Case
o Full Feedback
@ Myopic Feedback
@ General Feedback
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The Full Knowledge Case = General Feedback

General Feedback

General feedback

Activating a seed node at time t, we observe the propagation in graph for
d steps, for d € NU {oo} and fixed:

@ Allows to select seed nodes at predefined intermediate stages

@ Recall utility function f is NOT adaptive submodular unless d # oo

e d =1 represents the myopic feedback model
e d = oo represents the full (adoption) feedback model
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The Full Knowledge Case = General Feedback

Adaptive IM with General Feedback [Tong and Wang, 2019]

(k, d)-AIM

Given a budget k, and an observation stage of d steps,

@ repeat the following: select one seed node, wait for d rounds of
diffusion, and observe the diffusion ...

@ ...until k nodes are selected

@ wait for final diffusion to end, output number of activated nodes
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The Full Knowledge Case = General Feedback

Policy search

A policy m maps a status (S, @) to a set of nodes to be seeded, for S
denoting the set of current active nodes and ¢ being a realization giving
the live/dead state of edges that have been observed.

Objective

For k and d given, find a policy 7 such that the expected number of active
nodes, denoted F(, k, d), is maximized.
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The Full Knowledge Case = General Feedback

Adaptive IM with General Feedback [Tong and Wang, 2019]

(m, k, d)-process
Given a budget k, and an observation stage of d steps,

e starting with status (S, ¢) = (9, ¢x)

@ repeat the following step k times:

select and activate seed node 7 (S, ¢)
wait for and observe d rounds of diffusion

update S as set of current active nodes
update ¢ as current realization

@ wait for final diffusion to end, output number of activated nodes
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The Full Knowledge Case = General Feedback

Decision Tree

Decision tree

An adaptive seeding process can be seen as a decision tree, where node =
seed set, edge = status.

d rounds

level K1 swoeeereemsnssyores

d rounds

level k ........--I...
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The Full Knowledge Case = General Feedback

Greedy Policy

Greedy policy g

Given a status (S, ¢), the greedy policy 7, selects the node that maximizes
the marginal gain conditioned on (S, ¢):

7g(S, ¢) = argmax Af (S, v, ¢)

where
@ S denotes the set of current active nodes
@ ¢ is the realization i.e. state of edges that have been observed

0 Afo(S,v,0)= > Pr[p|¢] x Axo(S, v, 1)) is the expected
p=p,pev
marginal profit after diffusion terminates (d = c0), ¥ = full

realisations (possible worlds)
o Ax(S, v, ) = |Actives(S U {v}, )| — |Actives (S, 1)| is the
marginal increase due to v after diffusion terminates (d = o0)
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The Full Knowledge Case = General Feedback

Regret Ratio

Given a status (S, ¢), suppose we need to select one seed maximizing the
number of active nodes after t rounds (bounded time horizon t)
@ Option 1: seed immediately based on (S, ¢), to achieve a marginal
profit max, Afy(S, v, ¢)
@ Option 2: wait for diffusion to terminate, reaching some possible
status (Ss, ¢«) and then select v by

arg max Afyo(Sy, v, ¢x),

to achieve a marginal profit

Z Pr(¢.|d] x max Afso(Sk, v, dx)
(Sx,04)

(t, d)-regret ratio for (S, ¢)

result of option 2
result of option 1

Regret ratio «(S, ¢) =
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The Full Knowledge Case = General Feedback

Main Result in [Tong and Wang, 2019]

For each policy 7, we have that
F(mg, k,d) > (1 — e V) x F(m, k, d)

where a = maxs 4y (S, ¢) over all (S, ) in the (g, k, d)-process /
corresponding decision tree.
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The Full Knowledge Case

General Feedback

Empirical Analysis - Different Feedback Models (d)
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Other Approaches

© Other Approaches
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Other Approaches

Multi-Round Influence Maximization [Sun et al., 2018]

An advertiser's marketing campaign may contain multiple rounds to
promote one product ?
v Non-adaptive MRIM: determine the seed sets for all rounds at the
beginning
v" Adaptive MRIM: select seed sets adaptively based on the propaga-
tion in the previous rounds

KDD 2018: https://www.youtube.com/watch?v=FzDId0_78b0
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https://www.youtube.com/watch?v=FzDIdO_78b0

Triggering Diffusion Model

v' Discrete time diffusion model t =0,1,...
v Attimet=0:
o Seed set S is selected
e Each node v € V selects a random triggering set T(v) according to
some distribution over subsets of its in-neighbors
v At timet>1:
e An inactive node v becomes active if at least one node in T(v) is
activeat t —1

v The diffusion ends when no more nodes activated in a time steps.

Triggering diffusion model = to propagation in live-edge graph
Given sets { T(v)},ecv, we get the live-edge graph L = (V, E(L)):
w E(L) ={(u,v)|ve V,ue T(v)} (live edges)
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Other Approaches

Multi-Round Triggering (MRT) diffusion model

@ MRT includes T independent rounds, r
@ At each round r € [T] diffusion starts from a separate seed set S,
o S 2 {(v,r)|ves,) represents the seed set at round r

@ The diffusion at each round follows the standard triggering model

|

where I'(L,, S¢) is the active nodes at the end of round r.
v The expectation is over the distribution of live-edge graphs Ly,...,LT.

@ The budget at each round is equal to k

Influence spread in MRT model

.
o(8) = pUL.S) 2 E || (L, S1)

v
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Other Approaches
Non-Adaptive MRIM optimization task

Problem formulation

Given:
i) Graph G = (V,E)

i) Triggering set distribution for every node

iii) Number of rounds T
iv) Each-round budget k
our objective is to find seed set S* such that:

S*=8SUSU---UST= argmax p(S)
S:|St|<k,Vre[T]

v Find the T seed sets all at once before the propagation starts
v Classical IM is a special case of MRIM with T =1
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Other Approaches
Cross-Round setting

Let V, = {(v, r)|v € V} (all possible nodes at round r) and V £ U;l':1 V,

Cross-Round Greedy Policy

© Candidate space C =V
@ At every (greedy) time step:

e Pick (v, r) € C with the maximum gain without replacement
o IF budget of round r exhausts, C < C \ V,

Theorem: Performance bound

| A

For every € > 0 and ¢ > 0, with probability at least 1 — 1/n, the output
SO of CR-Greedy satisfies:

o) 2 (- ¢) s

if R = [31k?T?nlog(3kn"*1)/€?] as input.
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Other Approaches

ALGORITHM 15: CR-Greedy: Cross-Round Greedy Algorithm
Input: G, T, k, R (triggering set distributions)
Output: S°

1. SO« 0;:C«~V

2. ¢1,C,...,c 0

3: for i =1to kT do

4. Y(v,r) € C\ S estimate p(S° U {(v, r)}) simulating diffusion

process R times

5 (virr) & argmax(y,yeeys0 ASO U (v, 1))
6: SO« SU{(vi,ri)}icr <, +1
.
8

if ¢, > k then
C+C\V,
9. endif
10: end for
11: return S°
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Other Approaches
Within-Round setting

Let V, = {(v, r)|v € V} (all possible nodes at round r) and V 2 (JT_, V,

Within-Round Greedy Policy

© Seed nodes are selected by round-by-round

@ Only after selected all k seed nodes at round r, we greedily select seed
nodes for the next round r + 1.

Theorem: Performance bound

| A

For every € > 0 and ¢ > 0, with probability at least 1 — 1/n, the output
SO of WR-Greedy satisfies:

p(S%) > (1-e(72) — ) p(s7),

if R = [31k®nlog(2kn‘*t1T)/€?] as input.

\
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Other Approaches

ALGORITHM 16: WR-Greedy: Within-Round Greedy Algorithm
Input: G, T, k, R (triggering set distributions)
Output: S°

1 SO« 0;C+V

2. forr=1to T do

3: fori=1to kdo

4: V(v,r) € C\ 8% estimate p(S° U {(v, r)}) simulating diffusion

process R times

5: (Va I’) < arg maXxy ryec\s° ﬁ(so U {(V7 I’)})
6: SO SYu{(v,n)}

7. end for

8: end for

o: return SO
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CR-Greedy Vs. WR-Greedy

Performance Guarantee - Approximation ratio
o CR-Greedy: (% —€)
@ WR-Greedy: 0.46 — ¢

@ The running time of WR-Greedy is improved by a factor of T3,
compared to CR-Greedy
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Other Approaches
Adaptive Multi-Round Influence Maximization

v Let S, to be the seeds selected at round r, then (S;, r) is called item

F{(51,1),---,(Sr, r)}e) = UF(L

where L? is the live-edge graph of round J.

Adaptive Multi-Round IM problem

Discover best policy 7* such that:

m* = arg max fog () = Eo[f(E(r, D), D)),
WEHTJ(

with E(m, ®) to be the set of items selected under policy .
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Other Approaches
Adaptive Multi-Round Influence Maximization

Theorem: Performance bound

For every € > 0 and £ > 0, with probability at least 1 — 1/n, the policy
72 satisfies:

) (10D ) et

if R = [31k?nlog(2kn**1T)/€?] as input.

Running time
Total running time for T—round AdaGreedy: O(k3(Tn’*mlog(nT)/e?)

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis Adaptive Influence Maximization 127 / 147



Other Approaches

ALGORITHM 17: AdaGreedy: Adaptive Greedy for Round r
Input: G, T, k, R (triggering set distributions), A,_1 active node set by
round r — 1
Output: S, A,
1. S, < MC-Greedy(G,A,_1,k,R)
2: Observe the propagation of S,
3: Update activated nodes A,
4: return (5.,r), A,

Maximizing the expected marginal gain A((S,, r)|v)

Weighted influence maximization task in which we treat nodes in A, 1
with weight 0 and other nodes with weight 1
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Other Approaches
Comparing Strategies

Non-adaptive Strategies

@ SG: Select Tk seed nodes using greedy alg, then allocates the first k
as 51, and so on

SG-R: Select k seed nodes, and reuse the same k seeds at each round
CR-Greedy: Cross round greedy algorithm

CR-IMM: Cross round using IMM algorithm [Tang et al., 2015]
WR-Greedy: Within round using greedy algorithm

WR-IMM: Within round using IMM algorithm

v

Adaptive Strategies

@ AdaGreedy: Adaptive greedy algorithm
@ AdaIMM: Adaptive based on IMM algorithm
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Other Approaches

Empirical Analysis: Influence Spread on NetHEPT

- . Round
Method/Simulations I 5 3 1 z
SG 290.1 505.7 688.6 868.2 1027.3
(R = 10000} [288.8, 291.4] | [504.0,507.3] | [686.6, 690.4] | [866.2, 870.2] | [1025.2, 1029.4]
SG-R 289.5 516.3 714.0 8849 1042.0
(R = 10000) [288.2, 200.8] | [514.6,518.0] | [712.0, 7T16.0] | [882.7, 887.1] | [1039.7, 1044.2]
E-WR-Greedy 290.7 528.9 738.8 9302 1097 6.9
(R = 10000) [289.4, 292.0] | [527.2, 530.6] | [736.9, 740.8] | [928.0,932.3] | [10953, 1099.5]
WR-IMM 2909 532.8 7453 9301 1093.1
(R = 10000) [289.7, 202.3] | [531.1, 534.5] | [743.2, 747.3] | [928.0,932.2] | [1090.8, 1095.3]
CR-Greedy 267.8 528.7 730.4 9385 11213
(R.= 10000) [266.5, 269.1] | [527.2,530.4] | [728.5, 732.4] | [933.7, 937.8] | [1119.0, 1123.5]
CR-IMM | 283.0 517.4 7219 9316 1129.7
(R = 10000) [281.7, 284.2] | [515.7,519.2] | [720.0, 723.9] | [929.4,933.7] | [11277,1131.9]
AdaGreedy 288.3 533.4 758.1 S60.1 1141.5
(R = 150) [276.7, 299.7] | [5194,547.3] | [743.6, 772.7] | [943.9,976.3] | [11237, 1160.0]
AdalMm | 201.8 5444 T61.8 965.8 1146.3
(R =150) [281.3, 302.4] | [531.6,557.2] | [746.6, 776.9] | [949.7,982.0] | [1129.1, 1163.5]

“High Energy Physics Theory" section of arXiv from 1991 to 2003:
|V|=15,233, |E| = 62,774

Bogdan Cautis, Silviu Maniu, Nikolaos Tziortziotis

Adaptive Influence Maximization 130 / 147



Other Approaches

Empirical Analysis: Influence Spread on Flixster

- . Round
| Method/Simulations il 3 3 I 3
5G 5588 936.2 1200.3 1437.9 1631.5
(R = 10000) [5573,5603] | [9345, 937.9] | [1198.4,1202.2] | [1435.9, 1439.9] | [1629.5, 1633.6]
5G-R 559.8 0402 1262.6 15303 1764.9
(R = 10000) [5583,561.3] | [947.4,951.0] | [1260.6,1264.5] | [1528.2, 15324] | [1762.7, 1767.0
E-WR-Greedy 5578 976.5 1304.2 1587.8 1840.0
(R = 10000) [556,3 559.2] | [974.8, 978,3] | [1302.2, 1306.1] | [1585.8, 1580.8] | [1838.0, 1842.1]
WR-IMM 5581 967.5 1306.9 15991 1836.4
(R = 10000) [556.7, 559.6] | [965.7, 969.3] | [1306.9, 1308.9] | [1597.1, 1601.1] | [1834.3, 1838.5]
CR-Greedy 5109 048.6 12957 15935 1863.8
(R = 10000) [5184, 5215] | [946.7, 950.5] | [1293.7,1297.7] | [15914, 1595.5] | [1861.7, 1865.9]
CR-IMM 5217 935.8 1275.3 1585.9 1865.1
(R = 10000) [5217,523.2] | [933.1, 937.0] | [1273.3,1277.3] | [1583 8, 1588.0] | [1863.1, 1867.3]
AdaGreedy 5578 9778 1307.7 1605.2 1861.8
(R = 100) [539.8, 5805] | [956.2,999.1] | [1291.1,1324.3] | [1588.1, 1622.3] | [1845.3, 1878.3]
AdalMm 5555 977.9 1317.2 1613.2 18725
(R = 100} [5423, 568.6] | [962.9, 993.0] | [1300.8, 1333.5] | [1594.2, 16321] | [1853.0, 1891.9

Social movie discovery servicel: (|V| = 29,357, |E| = 212,614)

lyww.flixster.com
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@ Conclusions and Open Problems
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Conclusions and Open Problems
Adaptive IM in Summary

©

Adaptive policies can bring important benefits

©

May be more realistic / closer to real-life diffusion scenarios
No other alternatives in bandit settings

Harder to design and analyse

© 0 O

Sometimes properties such as adaptive submodularity no longer
exploitable

©

May be slower
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Conclusions and Open Problems
Open Issues in Bandit AIM Setting

@ Other bandit approaches besides LinUCB (e.g., Thompson
Sampling-based)
@ Other feedback models (full-bandit)

@ Dependency on IM-Oracles
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Conclusions and Open Problems

Open lIssues in Full-Knowledge Setting (1)

Some key generic questions:

@ When an adaptive policy might outperform a non adaptive one ?

@ By how much an adaptive policy may outperform a non adaptive one ?7
Can be addressed in ...

@ Theory: adaptivity gaps — some are not yet tight (e.g., myopic
observations), others are yet to be established (e.g., full-adoption
feedback for general graphs)

@ Practice: adaptivity gains — e.g., how adaptive greedy relates to
non-adaptive greedy, are there other algorithms besides greedy
exhibiting a better gain 7
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Conclusions and Open Problems

Open lIssues in Full-Knowledge Setting (2)

Other (more general) models besides IC and studied feedback types
(myopic, full, partial / general feedback)

e E.g, the edges we get to observe may depend on the context / status
— diffusion (maximize spread) vs. feedback (maximize observations)
trade-off when seeding nodes

@ Privacy issues limiting observations

o Finite time horizon — leading to adaptivity in the seeding batches
(seed later to observe more, but lose rounds . ..)

@ Beyond round by round: e.g., seeding stages triggered by events

o Other diffusion models (e.g., LT, general LT/IC), continuous-time
models
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Conclusions and Open Problems
Practical applicability

How to bring the theory closer to the practical needs of marketing /
information diffusion scenarios 7

@ Generalisation models are necessary in bandit IM problems; context too

@ May need more flexible bandit formulations: e.g., volatile bandits,
ways to learn both the graph structure and activation probabilities

@ Model independence may be beneficial in both bandit and
full-knowledge problems

@ Scalable algorithms for spread estimation

o Gain from going adaptive especially when imperfect marginal spread
estimations — how to capture that tradeoff
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Conclusions and Open Problems

Thank You
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