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ABSTRACT
We demonstrate the Taagle system for top-k retrieval in social tag-
ging systems (also known as folksonomies). The general setting is
the following: users form a weighted social network, which may
reflect friendship, similarity, or trust; items from a public pool of
items (e.g., URLs, blogs, photos, documents) are tagged by users
with keywords; users search for the top-k items having certain tags.
Going beyond a classic search paradigm where data is decoupled
from the users querying it, users can now act both as producers and
seekers of information. Hence finding the most relevant items in
response to a query should be done in a network-aware manner:
items tagged by users who are closer (more similar) to the seeker
should be given more weight than items tagged by distant users.

We illustrate with Taagle novel algorithms and a general ap-
proach that has the potential to scale to current applications, in
an online context where the social network, the tagging data and
even the seekers’ search ingredients can change at any moment. We
also illustrate possible design choices for providing users a fully-
personalized and customizable search interface. By this interface,
they can calibrate how social proximity is computed (for example,
with respect to similarity in tagging actions), how much weight the
social score of tagging actions should have in the result build-up, or
the criteria by which the user network should be explored. In order
to further reduce running time, seekers are given the possibility to
chose between exact or approximate answers, and can benefit from
cached results of previous queries (materialized views).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search Process
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social applications, social search, threshold algorithms

1. INTRODUCTION
Unprecedented volumes of data are now at everyone’s fingertips

on the Web. A new dynamics to this development has been brought
by the social Web, applications that are centered around users, their
relationships and their data. User-generated content is indeed be-
coming a significant, highly qualitative portion of the Web. This
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Figure 1: A folksonomy and its social network.
calls for adapted retrieval techniques. going beyond a classic search
paradigm where data is decoupled from the users querying it.

An important category of social applications are the collabo-
rative tagging sites, with popular examples including Del.icio.us,
StumbleUpon or Flickr. Their general setting is the following:

• users form a social network, which may reflect proximity,
similarity, friendship, closeness, trust, etc,

• items (e.g., document, URLs, photos, etc) are tagged by users
with keywords, for purposes such as description and classifi-
cation, sociality, or to facilitate later retrieval,

• users search for items having certain keywords (i.e., tags) or
they are recommended items.

In this context, finding the most relevant items that are tagged by
some keywords should be done in a network-aware manner, fol-
lowing the intuition that items tagged by users who are closer to
the seeker should be given more weight, as supported also by stud-
ies on the relevance of answers [13].

We associate with the notion of social network a rather general
interpretation, as a user graph whose edges are labeled by social
scores, which give a measure of the proximity or similarity between
two users. 1 These relationships are then exploitable in searches, as
indicators for how much weight one’s tagging actions should have
in the result build-up. Following a natural interpretation that user
links (e.g., similarity or trust) are (at least to some extent) transi-
tive, even items and tags from users who are only indirectly (or
implicitly) connected to the seeker should be relevant for a query.

We demonstrate the Taagle approach for top-k retrieval in collab-
orative tagging systems. It relies on novel techniques, that have the
potential to scale to current applications on the Web. (The most
popular ones have user bases of the order of millions and huge
repositories of data.)

EXAMPLE 1. Consider the collaborative tagging configuration
of Figure 1. Users have associated lists of tagged documents and
1Even in applications where an explicit social network does not
exist or is not exploitable, one may use the tagging history to build
a network based on similarity in tagging and items of interest.
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they are interconnected by social links. Each link is labeled by its
(social) score, assumed to be in the [0, 1] interval. Let us consider
user u1 in the role of the seeker, looking for the top-2 documents
that are tagged with both t1 and t2. Looking at u1’s immediate
neighbors and their respective documents, intuitively, D3 should
have a higher score than D4, given that the former is tagged by
a more relevant user (u1, whose social score is the maximal one).
If we expand the search to the entire social graph, the score of
D4 may however benefit from the fact that other users, such as
u5 or even u8, also tagged it with t1 or t2. Furthermore, docu-
ments such as D2 and D1 may also be relevant for the top-2 re-
sult, even though they were tagged only by users who are indirectly
linked to u1. Under certain assumptions to be clarified shortly, the
top-2 documents for u1’s query could be, in descending score or-
der, D4 and D2. In particular, this would be due to the fact that
u4’s (implicit) proximity with respect to seeker u1 can be given by
0.81 = max(0.9× 0.9, 0.6× 0.6× 0.5).

Taagle is designed with a focus on three key aspects:

1. Efficiency: to enable good running time over large networks
and collections of items, we proposed in [12] an algorithm
that is instance optimal (over a large and important class
of algorithms). Moreover, it can access on-the-fly the clos-
est users for a given seeker, for a large family of functions
for proximity computation (including the most natural ones).
For further efficiency, we also provide users with techniques
for approximate results, while striving to maintaining high
accuracy. In addition, we exploit in Taagle cached results of
previous queries (materialized views).

2. Applicability: the data structures and indexes it uses should
be applicable at the scale of current applications and beyond,
without requiring a prohibitively large amount of memory;
also, these should be able to cope with very frequent updates
on the social network and tagging of items.

3. Customization–personalization: seekers are given complete
control over choices w.r.t. the scoring and ranking model, the
computation of proximity values and how the social network
is explored, the kind of results (exact or approximate), etc.

Main related work. [1] is the first to consider the problem of
network-aware search in collaborative tagging, though by a sim-
plified flavor. The authors consider an extension to classic top-
k retrieval in which social proximity is seen as a binary function.
In [13], the network-aware retrieval problem for collaborative tag-
ging is considered under the general interpretation, positing that
even users who are only implicitly connected to the seeker can be
relevant for the top-k result. The main drawbacks of [13] are scal-
ability and applicability. They require precomputing a weighted
transitive closure over the entire network for proximity, which has a
very high cost in terms of space and computation in even moderate-
size social networks. Also, keeping these proximity lists up-to-date
– especially when they reflect tagging similarity – would simply be
unfeasible in real-world settings, which are highly dynamic. The
techniques of [13] have been demonstrated in a system in [6]. The
topic of search in a social setting has received increased attention
lately. Studies and models of personalization of social tagging sites
can be found in [9, 7, 14]. Other studies have found that including
social knowledge in scoring models can improve search and recom-
mendation algorithms. In [5], personalization based on a similarity
network is shown to outperform other personalization approaches
and the non-personalized social search. A study on a last.fm dataset
in [11] has found that incorporating social knowledge in a graph
model system improves the retrieval recall of music track recom-
mendation algorithms. An architecture for social data management

is given in [2, 3], along with a framework for information discovery
and presentation in social content sites. Another approach to rank
resources in social tagging environments is CubeLSI [4], which
uses a vector space model and extends LSI to include taggers in the
feature space of resources, in order to better match queries to doc-
uments. FolkRank [10] proposes a ranking model in folksonomies,
for recommendation and search, by an adaptation of PageRank on
the graph of users, tags, and resources.

2. MODEL AND ALGORITHMS OVERVIEW
We briefly describe in this section the top-k social search model

and the algorithm (TOPKS) on which Taagle relies. For a more
detailed description of TOPKS, we refer the reader to [12].

We consider a social setting in which we have a set of items
(could be text documents, URLs, photos, etc) I = {i1, . . . , im},
each tagged with one or more distinctive tags from a dictionary
of tags T = {t1, t2, . . . , tl} by one or more users from U =
{u1, . . . , un}. Users form an undirected weighted graph G =
(U , E,σ) called the social network. In G, each node is a user and
σ is a function that associates to each edge e = (u1, u2) a value in
(0, 1], called the proximity (or social) score between u1 and u2.

Given a seeker user s, a keyword query Q = (t1, ..., tr) (a set of
r distinct tags) and an integer value k, the top-k retrieval problem
is to compute the list of the k items having the highest scores with
respect to the seeker and query.

We first model for a user, item and tag triple (u, i, t) the score of i
w.r.t. seeker u and tag t. This is denoted score(i | u, t). Generally,

score(i | u, t) = h(fr(i | u, t))
where fr(i | u, t) is the overall term frequency of i w.r.t. seeker u
and tag t, h is a positive monotone function (e.g., tf-idf or BM25).

The overall term frequency function fr(i | u, t) is defined as a
combination of a network-dependent component and a document-
dependent one, with parameter α ∈ [0, 1], as follows:2

fr(i | u, t) = α× tf(t, i) + (1− α)× sf(i | u, t).
The former component, tf(t, i), is the term frequency of t in i, i.e.,
the number of times i was tagged with t. The latter component
stands for social frequency, a measure that depends on the seeker.

With each user bringing her own weight (proximity) to the score
of an item, we define the measure of social frequency as follows:

sf(i | u, t) =
∑

v∈{v | Tagged(v,i,t))}

σ(u, v).

Then, given a query q as a set of tags (t1, . . . , tr), the overall score
of i for seeker u and query q,

score(i | u, q) =
∑

tj∈Q

score(i | u, tj).

The above scoring model takes into account so far only the users
directly connected to the seeker. But this can be extended to deal
also with users that are indirectly connected to the seeker (friends-
of-friends and beyond), by inferring from the explicit σ values the
implicit ones, for any pair of users connected by a path in the net-
work. This leads to an overall item scoring scheme that depends on
the entire network instead of only the seeker’s vicinity.

A natural candidate for computing implicit proximity is to mul-
tiply the weights on a given path between u and v and then choose
the maximum value over all the possible paths ( [13, 12]). We can
aggregate the weights on a path p = (u1, . . . , ul) (with a slight
abuse of notation) as σ(p) =

∏
i σ(ui, ui+1).

2Note that the extreme case of α = 1 leads to a scoring model
in which the social network is ignored (the classic top-k setting),
while α = 0 yields an “exclusively social” scoring model.
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Figure 2: General system architecture.

A possible drawback of multiplication for proximity aggregation
is that values may decrease quite rapidly. An alternative that avoids
this could be obtained by using minimum over a path instead, as
σ+(p) = min{σ(ui, ui+1)}. Under this σ candidate, the values
with respect to seeker u1 in Figure 1 would be the following: {u2 :
0.9, u4 : 0.9, u3 : 0.6, u6 : 0.6, u5 : 0.5, u7 : 0.5, u8 : 0.5, u9 :
0.25, u10 : 0.25}.

Another natural candidate for σ relies on a “drop parameter”
λ ≥ 1, controlling the speed of the decrease of proximity val-

ues, as σ(p) = λ
−

∑
i

1
σ(ui,ui+1) . Under this candidate for σ, for

λ = 2, the rounded values w.r.t seeker u1 in Figure 1 would be
{u2 : 0.81, u3 : 0.36, u4 : 0.21, u6 : 0.09, u5 : 0.07, u7 :
0.03, u9 : 0.018, u8 : 0.018, u10 : 0.011}.

We can then define σ for any pair of user (s, u) who are con-
nected in the network by taking the maximal weight over all their
connecting paths. More formally, we define σ(s, u) as

σ(s, u) = maxp{σ(p) | s
p
❀ u}.

The key common feature of the candidate functions previously dis-
cussed is that they are monotonically decreasing over any path they
are applied to, when σ draws values from the interval [0, 1]; any
aggregation function having this property could be used instead.

The TOPKS algorithm. We proposed in [12] and demonstrate
here the TOPKS algorithm, in both an exact and approximate ver-
sion. It belongs to the class of early-termination threshold algo-
rithms (as [8]’s NRA and TA, or [13]’s CONTEXTMERGE).

In short, to find the top-k items for a given query, threshold algo-
rithms scan sequentially (for a given tag) and in parallel (for a given
query), relevant lists that are ordered descending by score. During
a run, they maintain a list of candidate items already encountered
D, ordered descending by their minimal (or guaranteed) scores. At
certain intervals, they compare the minimal score (MINSCORE) of
the kth item D[k] to the maximal score of items in D outside the
top k (the threshold), MAXSCORE, and the maximal score of items
not yet encountered, MAXSCOREUNSEEN. When both these max-
imal scores are not greater than the minimal score of D[k], the run
stops, returning the items D[1], . . . , D[k] as the top-k.

In our social setting, a similar algorithm needs to scan (i) the
per-tag inverted lists (that are network-agnostic), (ii) the seeker’s
proximity list, in descending order, i.e., visiting the next closest un-
visited user at each step, and (iii) the per-visited user tagged items
(user lists). Our algorithm TOPKS and [13]’s CONTEXTMERGE
use such an approach. However, the latter relies on precomputed
and exhaustive proximity lists for each possible seeker (hence a
complete pre-computed transitive closure).

TOPKS exploits the descending monotonicity property of the
proximity aggregation functions described previously to built the
proximity vector of the seeker on-the-fly and on demand. This is
done by a generalization of Djiskstra’s algorithm, and has three

Figure 3: Main window and options.

main advantages. First, we can iterate over the relevant users in
more efficient manner, since a typical network can easily fit in
main-memory; this can spare the potentially huge disk volumes re-
quired by [13]’s algorithm while also having the potential to run
faster. Second, changes in the social network can be handled vir-
tually in transparent manner; moreover, when the social network
depends on the tagging history, we can keep it up-to-date and, by
it, all the proximity values at any given moment, with little over-
head. Third, in the Taagle implementation, we can give seekers the
possibly to choose and calibrate at query time the proximity model.

To achieve instance optimality in the exclusively social case (α =
0), TOPKS dynamically “consumes” (or prunes) the top item in an
inverted list when it is first encountered in a user list. In short, this
allows tighter evaluations for maximal scores. For arbitrary values
of α, the algorithm chooses between the network-agnostic branch
(the per-tag inverted lists) and the network exploration (and user
lists), based on heuristics validated by extensive experiments.

Regarding the approximate version of TOPKS, score estimates
can be further tightened if one has access to high-level yet easily
maintainable descriptions of the per-seeker proximity lists (mean
and variance, as in [12], or histograms in Taagle). One can then ef-
ficiently use these descriptions to derive tighter bounds, controlled
by a probabilistic parameter, for both maximal and minimal score
estimations. We show in [12] that this approach achieves signifi-
cant savings in execution time, while ensuring high accuracy.

3. EXPLOITING CACHED RESULTS
For further efficiency, in the online context of Taagle , users can

opt to use materialized results of previous queries in the network.
These precomputed results have an intentional definition, the

triple query-seeker-alpha parameter V (Q(V ), u(V ), α(V )). They
consist of items for which an upper and lower bound on the exact
score is known, (i(V ), lb(V )

i , ub(V )
i ).

We incorporate in Taagle the usage of information present in
these views, to refine score ranges for pertinent candidate items
during the run of the search, for the current triple of seeker s, query
Q, and parameter α. The following factors need to be taken into ac-
count when using precomputed results (the views). When one does
not have access to precomputed results for the entire input query
Q, but instead only for subsets of it or for overlapping queries, one
needs to combine the views of one user u into one global view,
containing only items having a valid score ranges for the query
Q. These bounds are obtained by solving linear programming in-
stances. Moreover, the relationship between the view’s α(V ) value
and the input α value, as the proximity of the seeker s to the view
holder u, σ(s, u), need to be incorporated in the final score ranges.

A subroutine for handling views is added to TOPKS, whose role
is to analyze and exploit these precomputed results. Each time the
main algorithm visits a user u, for which there are precomputed
results, this subroutine will do the following:

1. decide whether u’s views may lead to early termination. If
this is the case, select the most useful ones needed to estimate
bounds for item scores w.r.t query Q (this depends on the
values α(V ) of views and the queries Q(V )).

2. if (1), compute refined item score ranges, for a selection of
items, via linear programming (either exact or approximate).
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Figure 4: Results window.

4. ARCHITECTURE AND DEMO SCENARIO
Figure 2 gives an overview of the general architecture of Taa-

gle. The entry point of the application is a GWT servlet via which
users formulate top-k queries, using the various options and pa-
rameters available. The queries and corresponding parameters are
then sent asynchronously, via RPC calls, to the server-side applica-
tion, which handles the top-k processing. The server-side applica-
tion is an implementation of the TOPKS algorithm and its variants
(see [12] for a detailed description). The results are sent back to
the client servlet, which displays them along with relevant meta-
data (e.g., statistics).

TOPKS uses data from precomputed tables and handles the on-
the-fly computation of social proximities. At initialization, it loads
the social network into main-memory. The system uses pre-compu-
ted projections of the Tagged relation: the per-tag inverted lists in
ItemList, total tag frequencies in TagFreq (used for idf val-
ues), per-user item lists; it also uses per-user materialized views:
the description in CacheQuery and the resulting items with their
score ranges in CacheItems. A per-user item list is only ac-
cessed when the algorithm visits the respective user. Finally, the
TOPKS approximate version uses a high-level description of each
per-user proximity list, stored in UserMVar (mean and variance)
and UserHist (histograms).

We demonstrate an implementation of this architecture, enriched
with tools that assist visitors in understanding the principles of the
system and the impact of its various parameters. The system uses
the tagging data from a subset of the Delicious social community,
including about 80000 users and 600000 bookmarked items.

After “logging in”, Taagle visitors identify with one of the mem-
bers of the network, and are able to formulate queries from that
perspective (as the seeker). They are able to fully customize their
search experience using the interface in Figure 3, having access to
(i) a selection of ways to compute similarity measures (used for
proximity computations) such as tag, item or item-tag similarity,
(ii) various proximity aggregation functions (path multiplication,
minimum, the parameterized function with drop parameter λ, or
enter their own), (iii) tools for comparing the results and the behav-
ior of the various algorithms implemented in the system (TOPKS,
the exact algorithm; TOPKS/MVAR and TOPKS/HIST, approxi-
mate algorithms using high-level descriptions of proximities, con-
trolled by a precision parameter; TOPKS/VIEWS, exact algorithm
that may exploit precomputed results of other seekers).

The results window, for which a capture is given in Figure 4, will
present the top-k items, together with an explanation of the item
scores and algorithm statistics: running times, number of users and
documents processed, threshold values and termination parameters,
interactive plots of the social proximities that were generated and
accessed during execution.

For further interaction with the system, visitors will be able to
explore and modify part of the collaborative tagging network, and
investigate the impact of their changes on query results. Figure 5
presents the exploration interface, where nodes (representing users

Figure 5: Exploring the network and per-user options.

in the dataset) are color-coded depending on their relationship to
the query and the seeker. In the figure, the blue node is the cur-
rent seeker, the green nodes are users who have items tagged with
at least one query tag and were processed for the query (i.e., con-
tributed to candidate item scores), and red nodes are those that were
not relevant for the run. The visitor can then select any of these
nodes and require information about them: her neighborhood with
the respective proximities, the relevant tags used and the possibly
relevant views she holds. Several contextual actions are then avail-
able to visitors. They can for example set the selected node as the
new seeker, as they can tag an item (new or existing) using any list
of tags on behalf of the selected user. This helps the visitor notice
two possible effects: (i) depending on the selected user, the added
(or modified) item may become relevant for the requested top-k,
and (ii) the similarity of the selected user relative to other users in
the system may change, and this change will be handle transpar-
ently and without overhead in future searches.

Taagle visitors will also be able to cache top-k results, and use
them in later queries by various seekers. A view exploration screen
(omitted here), where we indicate users holding views, will enable
visitors to see which users in an immediate vicinity hold some that
may be relevant for the current query.
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