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Why Treewidth?

Many computational tasks are hard (when considering 
data complexity) on graph-like structures, but are easy on 
tree structures


But just how tree-like is the data? And how useful is 
having this tree-likeness measure?



Why Treewidth?
Treewidth: a measure on how tree-like data is [Robertson 
and Seymour, 1984]


For data that has bounded treewidth, one can obtain efficient 
algorithms:


1. query evaluation of MSO queries is linear time over 
bounded-treewidth data structures [Courcelle, 1990], also 
applies to counting and enumeration


2. computing probabilities of MSO queries over TID 
probabilistic databases which are bounded-treewidth is 
linear time [Amarilli et al., 2015]



Treewidth: Intuition
Treewidth: a measure on how tree-like data is [Robertson 
and Seymour, 1984]


Can be obtained using a tree decomposition (or a 
hierarchy of separators)


The treewidh is the smallest obtainable size of a separator 
(minus one)



Treewidth: Intuition

The treewidth is the smallest obtainable size of a 
separator (minus one)

Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Treewidth: Informal Definition

Graph-theoretic measure of how close to a tree a graph is
Computed as the minimum width of a tree decomposition,
i.e., a way to build a hierarchy of separators
Width: maximum size of a separator minus one

Trees have treewidth 1
Cycles have treewidth 2
-cliques and -grids have treewidth
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Treewidth: Intuition

The treewidh is the smallest obtainable size of a 
separator (minus one)


•  trees have treewidth 1


•  cycles have treewidth 2


•  k-cliques have treewidth k-1



Treewidth: Formal Definition

Definition
Given an undirected graph G = (V,E), where V represents the set of vertices

(or nodes) and E ✓ V ⇥V the set of edges, a tree decomposition is a pair (T,B)
where T = (I, F ) is a tree and B : I ! 2V is a labeling of the nodes of T by
subsets of V (called bags), with the following properties:

1.
S

i2I B(i) = V ;

2. 8(u, v) 2 E, 9i 2 I s.t. {u, v} ✓ B(i); and

3. 8v 2 V , {i 2 I | v 2 B(i)} induces a subtree of T .
<latexit sha1_base64="DqcO200D2PLJLBsp27Wb3ZZH3m0="></latexit>



Treewidth: Formal Definition
Given a graph G = (V,E) the width of a tree decomposition (T,B) is equal

to maxi2I(|B(i)|� 1). The treewidth of G, w(G), is equal to the minimal width
of all tree decompositions of G.

<latexit sha1_base64="1g6Uw0kr+yVBlcPw42hHswdH/vE="></latexit>
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Figure 1 Example undirected, unlabeled, graph (left) and decomposition of width 3 (right)

potential cases in which treewidth-based approaches are of practical interest. For this, after138

formally defining tree decompositions and treewidth (Section 2), we select the algorithms that139

are able to deal with large-scale data instances, for both lower- and upper-bound estimations140

(Section 3). Our aim here is not to propose new algorithms for treewidth estimation, and141

not to exhaustively evaluate existing treewidth estimation algorithms, but rather to identify142

algorithms that can give acceptable treewidth estimation values in reasonable time, in order143

to apply them to real-world data. Then, we use these algorithms to obtain lower and upper144

bound intervals on treewidth for 25 databases from 8 di�erent domains (Section 4). We145

mostly consider graph data, for which the notion of treewidth was initially designed (the146

treewidth of an arbitrary relational instance is simply defined as that of its Gaifman graph).147

The graphs we consider, all obtained from real-world applications, have between several148

thousands and several millions of vertices. To the best of our knowledge, this is the first149

comprehensive study of the treewidth of real-world data of large scale from a variety of150

application domains.151

Our finding is that, generally, the treewidth is too large to be able to use treewidth-based152

algorithms directly with any hope of e�ciency.153

Second, from this finding, we investigate how a relaxed (or partial) decomposition can154

be used on real-world graphs. In short, we no longer look for complete tree decompositions;155

instead, we allow the graph to be only partially decomposed. In complex networks, there156

often exists a dense core together with a tree-like fringe structure [51]; it is hence possible to157

decompose the fringe into a tree, and to place the rest of the graph in a dense “root”. It has158

been shown that this approach can improve the e�ciency of some graph algorithms [5,47,62].159

In Section 5, we analyze its behavior on real-world graphs. We conclude the paper in160

Section 6 with a discussion of lessons learned, as to which real-world data admit (full or161

partial) low-treewidth tree decompositions, and how this impacts query evaluation tasks.162

Due to lack of space, some details and additional experiments are deferred to the163

appendix.164

2 Preliminaries on Treewidth165

To make the concepts in the following clear, we start by formally introducing the concept of166

treewidth. Following the original definitions in [56], we first define a tree decomposition:167

I Definition 1 (Tree Decomposition). Given an undirected graph G = (V, E), where V168

represents the set of vertices (or nodes) and E ™ V ◊V the set of edges, a tree decomposition169

is a pair (T, B) where T = (I, F ) is a tree and B : I æ 2V is a labeling of the nodes of T by170

subsets of V (called bags), with the following properties:171

1.
t

iœI B(i) = V ;172

2. ’(u, v) œ E, ÷i œ I s.t. {u, v} ™ B(i); and173



Treewidth

Readily usable for graphs, for relational data the Gaifman 
graph can be used


Only low treewidth makes things easy: even linear time 
algorithms hide a non-elementary dependency in 
treewidth


In some cases, treewidth is the only hope to have 
polynomial time algorithms! [Amarilli et al., 2016] 



In Practice

If data has low treewidth, we have plenty of efficient 
algorithms (based on tree decompositions)


Question 1: Are real-world data low treewidth?



Computing Treewidth

Computing the treewidth exactly is hard [Arnborg et al., 
1987]


We can compute upper bounds [Bodlaender and Koster, 
2010], which also give a tree decomposition


Also can obtain lower bounds efficiently [Bodlaender and 
Koster, 2011]



Upper Bound Algorithms
General algorithm, generating a tree decomposition:


1. generate an ordering of the nodes


2. for each node in the ordering, create a bag containing it and its neighbors


3. remove the node from the graph, create a clique between the neighbors


4. continue until no nodes are left


Details differ in how the ordering is generated:


• minimum degree first (MINDEGREE)


• minimum fill-in (MINFILLIN)


• combination thereof
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Figure 2 Graph triangulation for the graph of Figure 1 (left) and its elimination ordering (right)

I Definition 5. A chordal graph is a graph G such that every cycle in G of at least four215

vertices has a chord – an edge between two non-successive vertices in the cycle.216

A triangulation (or chordal completion) of a graph G is a minimal chordal supergraph217

G
� of G: a graph obtained from G by adding a minimal set of edges to obtain a chordal218

graph.219

I Example 6. The graph in Figure 1 is not chordal, since, for example, the cycle 3–4–5–6–3220

does not have a chord. If one adds an edge between 3 and 5, as in Figure 2 (left), one can221

verify that the resulting graph is chordal, and thus a triangulation of the graph of Figure 1.222

One way to obtain triangulations of graphs is elimination orderings. An elimination223

ordering Ê of a graph G = (V, E) of n nodes is an ordering of the vertices of G, i.e., it can be224

seen as a bijection from V onto {1, . . . , n}. From this ordering, one obtains a triangulation225

by applying sequentially the following elimination procedure for each vertex v: first, edges226

are added between remaining neighbors of v as needed so that they form a clique, then v is227

eliminated (removed) from the graph. For every elimination ordering Ê, G along with all228

edges added to G in the elimination procedure forms a graph, denoted G
�
Ê . This graph is229

chordal (indeed, we know that the two neighbors of the first node of any cycle we encounter230

in the elimination ordering have been connected by a chord by the elimination procedure).231

It is also a supergraph of G, and it can be shown it is a minimal chordal supergraph, i.e., a232

triangulation of G.233

I Example 7. Figure 2 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the234

graph of Figure 1. The elimination procedure adds a single edge, when processing node 6,235

between nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.236

Elimination orderings are connected to treewidth by the following result:237

I Theorem 8. [18] Let G = (V, E) a graph, and k 6 n. The following are equivalent:238

1. G has treewidth k.239

2. G has a triangulation G
�, such that the maximum clique in G

� has size k + 1.240

3. There exists an elimination ordering Ê such that the maximum clique size in G
�
Ê is k + 1.241

Obtaining the treewidth of the graph is thus equivalent to finding an optimal elimination242

ordering. Moreover, constructing a tree decomposition from an elimination ordering is a243

natural process: each time a vertex is processed, a new bag is created containing the vertex244

and its neighbors. Note that, in practice, we do not need to compute the full elimination245

ordering: we can simply stop when we know that the number of remaining vertices is lower246

that the largest clique found thus far.247



Lower Bound Algorithms
Computing other proxy measures, which are lower 
bounds on treewidth:


1. second lowest degree in the graph (DELTA2D)


2. second lowest degree in a subgraph of the graph 
(MMD)


3. second lowest degree in a minor of the graph (MMD+)


Algorithms differ in how the subgraphs and minors are 
explored (usually in a greedy fashion)



Experimental Setup
25 graph datasets from 8 different domains: 
infrastructure, social networks, Web, communication, 
hierarchies, ontologies, relational databases, biology


Tests ran machines on having 32GB RAM, Intel Xeon 
1.7GHz CPUs


The maximal running time allowed was two weeks


Code and datasets available online                             
https://github.com/smaniu/treewidth



Treewidth: Absolute Values9:10 An Experimental Study of the Treewidth of Real-World Graph Data

100

101

102

103

104

105

106

C
a Pa Tx

Buc
ha

re
st

H
on

gK
on

g
Par

is

Lo
nd

on Stif

Pow
er

G
rid

Fac
eb

oo
k

Enr
on

W
ik
IT

al
k

C
itH

ep
h

Sta
ck

TC
S

Sta
ck

M
at

h

Li
ve

Jo
ur

na
l

W
ik
ip
ed

ia

G
oo

gl
e

G
nu

te
lla

R
oy

al

M
at

h
Yag

o

D
bP

ed
ia

Tpc
h

Yea
st

w
id

th

Degree
FillIn

Degree+FillIn
MMD

MMD+
Delta2D

(a) absolute values

(b) relative values
Figure 3 Treewidth estimation of di�erent algorithms (logarithmic scale)

https://github.com/smaniu/treewidth/.352

Upper Bounds We show in Figure 3 the results of our estimation algorithms. Lower values353

mean better treewidth estimations. Focusing on the upper bounds only (red circular points),354

we notice that, in general, FillIn does give the smallest upper bound of treewidth, in line355

with previous findings [19]. Interestingly, the Degree heuristic is quite competitive with the356

other heuristics. This fact, coupled with its lower running time, means that it can be used357

more reliably in large graphs. Indeed, as can be seen in the figure, on some large graphs only358

the Degree heuristic actually finished at all; this means that, as a general rule, Degree359

seems the best fit for a quick and relatively reliable estimation of treewidth.360

We plot both the absolute values of the estimations in Figure 3a, but also their relative361

values (in Figure 3b, representing the ratio of the estimation over the number of nodes362

in the graph), to allow for an easier comparison between networks. The absolute value,363

while interesting, does not yield an intuition on how the bounds can di�er between network364

types. If we look at the relative values of treewidth, it becomes clear that infrastructure365

networks have a treewidth that is much lower than other networks; in general they seem to366

be consistently under one thousandth of the original size of the graph. This suggests that,367

indeed, this type of network may have properties that make them have a lower treewidth.368

For the other types of networks, the estimations can vary considerably: they can go from369

one hundredth (e.g., Math) to one tenth (e.g., WikiTalk) of the size of the graph.370

As further explained in Appendix B, the bounds obtained here on infrastructure networks371

are consistent with a conjectured O( 3
Ô

n) bound on the treewidth of road networks [27]. One372

relevant property is their low highway dimension [2], which helps with routing queries and373

decomposition into contraction hierarchies. Even more relevant to our results is the fact that374



Treewidth: Relative Values
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mean better treewidth estimations. Focusing on the upper bounds only (red circular points),354

we notice that, in general, FillIn does give the smallest upper bound of treewidth, in line355

with previous findings [19]. Interestingly, the Degree heuristic is quite competitive with the356

other heuristics. This fact, coupled with its lower running time, means that it can be used357

more reliably in large graphs. Indeed, as can be seen in the figure, on some large graphs only358

the Degree heuristic actually finished at all; this means that, as a general rule, Degree359

seems the best fit for a quick and relatively reliable estimation of treewidth.360

We plot both the absolute values of the estimations in Figure 3a, but also their relative361

values (in Figure 3b, representing the ratio of the estimation over the number of nodes362

in the graph), to allow for an easier comparison between networks. The absolute value,363

while interesting, does not yield an intuition on how the bounds can di�er between network364

types. If we look at the relative values of treewidth, it becomes clear that infrastructure365

networks have a treewidth that is much lower than other networks; in general they seem to366

be consistently under one thousandth of the original size of the graph. This suggests that,367

indeed, this type of network may have properties that make them have a lower treewidth.368

For the other types of networks, the estimations can vary considerably: they can go from369

one hundredth (e.g., Math) to one tenth (e.g., WikiTalk) of the size of the graph.370

As further explained in Appendix B, the bounds obtained here on infrastructure networks371

are consistent with a conjectured O( 3
Ô

n) bound on the treewidth of road networks [27]. One372

relevant property is their low highway dimension [2], which helps with routing queries and373

decomposition into contraction hierarchies. Even more relevant to our results is the fact that374



Main Takeaways

Negative result: treewidth is never very low (<10)


However, for infrastructure networks, treewidth is 
relatively low (similar to the            bound conjectured in 
[Dibbelt et al, 2016])


Other graphs exhibit high treewidth values, outside 
practical usefulness: social networks, Web graphs, 
knowledge graphs

𝒪( 3 n)



Is Treewidth Only of 
Theoretical Relevance?

The second question: can we still find practical use 
cases for treewidth (and tree decompositions)?



Partial Tree Decompositions

Instead of computing the full tree width estimation, what if 
we stop sometime during the decompositions process? 
— Partial Tree Decomposition


Results in a hybrid tree-graph structure:


1. a low treewidth fringe, and


2. a (potentially) high-treewidth core graph



Partial Tree Decompositions

S. Maniu and P. Senellart and S. Jog 9:13

have more edges with larger parameter values.454

5 Partial Decompositions455

Our results show that, in practice, the treewidths of real networks are quite high. Even in the456

case of road networks, having relatively low treewidths, their value can go in the hundreds,457

rendering most algorithms whose time is exponential time in the treewidth (or worse)458

unusable. In practical applications, however, we can still adapt treewidth-based approaches459

for obtaining data structures – not unlike indexes – which can help with some important460

graph queries like shortest distances and paths [5, 62] or probability estimations [10,47].461

The manner in which treewidth decomposition can be used starts from a simple observation462

made in studies on complex graphs, that is, that they tend to exhibit a tree-like fringe and463

a densely connected core [50, 51]. The tree-like fringe precisely corresponds to bounded-464

treewidth parts of the network. This yields an easy adaptation of the upper bound algorithms465

based on node ordering: given a parameter w representing the highest treewidth the fringe466

can be, we can run any greedy decomposition algorithm (Degree, FillIn, DegreeFillIn)467

until we only find nodes of degree w + 1, at which point the algorithm stops. At termination,468

we obtain a data structure formed of a set of treewidth w elements (w-trees) interfacing469

through cliques that have size at most w + 1 with a core graph. The core graph contains all470

the nodes not removed in the bag creation process, and has unbounded treewidth. Figure 5471

illustrates the notion of partial decompositions.472

core

w-tree (w=3)
w-tree (w=4)

w-
tre

e 
(w

=1
)

fringe

Figure 5 An abstract view of partial decompositions. Partial decompositions are formed of a
core graph, which interfaces with w-trees through w-cliques (the fringe).

The resulting structure can be thought of as a partial decomposition (or relaxed decom-473

position), a concept introduced in [5,62] in the context of answering shortest path queries,474

and used in [47] for probabilistic distance queries. A partial decomposition can be extremely475

useful. The tree-like fringe can be used to quickly precompute answers to partial queries (e.g.,476

precompute distances in the graph). Once the precomputation is done, these (partial) answers477

are added to the core graph, where queries can be answered directly. If the resulting core478

graph is much smaller than the original graph, the gains in running time can be considerable,479

as shown in [5,47,62]. Hence, the objective of our experiments in this section is to check how480

feasible partial decompositions are.481
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 General Algorithm for 
Partial Tree Decompositions
1. Isolate a part of low treewidth (by stopping the 

decomposition process early)


2. (Pre-)process the fringe efficiently (due to its low 
treewidth)


3. Process the core graph using other techniques (e.g., 
approximate algorithms)


4. Combine results



 Partial Tree Decompositions: 
When to Stop?
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Applications

Low treewidth decompositions were used to compute 
shortest distances efficiently in graphs [Wei, 2010] 


• Might suggest a reason why contraction-based 
approaches work so well for shortest distances in 
infrastructure networks



Applications

In our previous work [Maniu et al, 2017], we used tree 
decompositions to compute efficiently reachability 
probabilities in probabilistic graphs:


1. compute exact probabilities in low treewidth areas, and


2. combine then in the root graph and use sampling to 
estimate probabilities



Conclusions

• Bounded-treewidth data has nice theoretical properties, 
but …


• … there are no graphs in the real-word having low 
treewidth.


• However, hope for practical applications remains when 
using partial tree decompositions!



Thank you!


