

Bandits Under the Influence

Silviu Maniu, Stratis Ioannidis, Bogdan Cautis

Université Paris-Saclay & Northeastern University

Recommender systems: recommending items to users

- preferences may be unknown or highly dynamic
- online recommendations systems re-learn preferences on the go
- $\cdot\,$ users can be influence by other users social influence

Objective: **online recommendation systems** taking into account social influence

• solution framework: sequential learning, multi-armed bandits

- Set of users [n], receiving suggestions at time steps $t \in \mathbb{N}$, each having user profiles $\mathbf{u}_i(t) \in \mathbb{R}^d$
- **Recommended item**: *d*-dimensional vector $\mathbf{v} \in \mathbb{R}^d$, \mathcal{B} the **catalog** of recommendable items

Each **time step t**: user is presented an item *i*, and presents a rating $r_i(t)$:

$$r_i(t) = \langle \mathbf{u}_i(t), \mathbf{v}_i(t) \rangle + \epsilon$$

Users are in a **social network**, and interests evolve in time steps:

$$\mathbf{u}_i(t) = \alpha \mathbf{u}_i^{o} + (1 - \alpha) \sum_{j \in [n]} P_{i,j} \mathbf{u}_j(t - 1), \ i \in [n]$$

- · social parameter $\alpha \in [0, 1]$
- influence network between users *i* and *j*, *P*_{*ij*}

- Establish the link between the online recommendation and linear bandits
- 2. Apply the **non-stationary** setting to the classic LinREL and Thompson Sampling algorithms from the bandit literature
- 3. Study **tractable cases** for solving the optimizations in each step of the algorithms

Want to minimize the aggregate regret:

$$R(T) = \sum_{t=1}^{T} \sum_{i=1}^{n} \langle \mathbf{u}_i(t), \mathbf{v}_i^*(t)
angle - \langle \mathbf{u}_i(t), \mathbf{v}_i(t)
angle$$

Bandit setting: we notice that the aggregate reward is a linear function of the matrix of user profiles *U*^o:

• expected reward $\bar{r}(t) = u_0^{\top} L(t) v$ – function of vectorized forms of the user and item matrices u, v and a matrix capturing the social evolution L(t)

LinREL:

- arms are selected from a vector space, and the expected reward observes an linear function of the arm
- to select an armwe use Upper Confidence Bound (UCB) principle
 a confidence bound on an estimator
- the unknown model is estimated via least square fit, either L_1 or L_2 ellipsoids

In our case:

- arms are the items v, modified by L(t) non-stationary setting
- the estimator is least-squares

$$\hat{\mathbf{u}}_{\mathsf{o}}(t) = \operatorname*{arg\,min}_{\mathbf{u} \in \mathbb{R}^{nd}} \sum_{\tau=1}^{t-1} \|X(V(\tau), A(\tau))\mathbf{u} - \mathbf{r}(\tau)\|_2^2$$

recommendations are selected as solution to the non-convex optimization

$$\mathbf{v}(t) = rg\max_{\mathbf{v}\in\mathcal{B}^{(n)}} \max_{\mathbf{u}\in\mathcal{C}_t} \mathbf{u}^ op \mathsf{L}(t)\mathbf{v}$$

 \cdot we study the case of $\mathcal{C}^1,$ \mathcal{C}^2 – ellipsoids in L_1 and L_2

Theorem

Assume that, for any $\mathbf{0} < \delta < \mathbf{1}$:

$$\beta_{t} = \max\left\{128nd\ln t\ln\frac{t^{2}}{\delta}, \left(\frac{8}{3}\ln\frac{t^{2}}{\delta}\right)^{2}\right\}, \qquad (1)$$

then, for $C_t = C_t^2$:

$$\Pr\left(\forall T, R(T) \leq n\sqrt{8nd\beta_T T \ln\left(1+\frac{n}{d}T\right)}\right) \geq 1-\delta,$$
(2)

and, for $\mathcal{C}_t = \mathcal{C}_t^1$:

$$\Pr\left(\forall T, R(T) \leq n^2 d \sqrt{8\beta_T T \ln\left(1 + \frac{n}{d}T\right)}\right) \geq 1 - \delta.$$
(3)

For \mathcal{C}^1 the optimization can be solved **efficiently** for two classes of catalogs:

- if B is a convex set convex optimization problem, need to solve
 2n²d convex problems
- if \mathcal{B} is a finite subset can check all $|\mathcal{B}|$ items for a total of $2n^2d$ evaluations

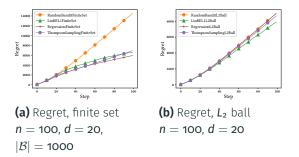
Thompson Sampling

- $\cdot\,$ Bayesian interpretation, assumes a prior on \mathtt{u}_{o}
- in each step, samples this vector from the posterior obtained after the feedback has been observed
- computationally efficient
- Bayesian regret of the same order as for LinREL

LinUCB

- similar to LinREL, but does not optimize over an ellipsoid
- non-convex optimization, inefficient

Results on Synthetic Datasets



Synthetic dataset: randomly generated social network, user profiles, and catalog

Results on Real Dataset

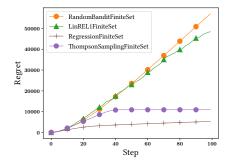


Figure 1: Flixstr regret n = 206, d = 28, |B| = 100

Flixstr: filtered dataset

- 1049 492 users in a social network of 7 058 819 links
- 74 240 movies and 8 196 077 reviews