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Recommender systems: recommending items to users

- preferences may be unknown or highly dynamic

- online recommendations systems - re-learn preferences on the
g0

- users can be influence by other users - social influence

Objective: online recommendation systems taking into account
social influence

- solution framework: sequential learning, multi-armed bandits
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Setting - Recommendation

Set of users [n], receiving suggestions at time steps t € N, each having
user profiles u;(t) € RY

Recommended item: d-dimensional vector v e RY B the catalog of
recommendable items

Each time step t: user is presented an item i, and presents a rating
I’i(t)I
ri(t) = (uj(t),vi(t)) + €
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Setting - User Preference Evolution

Users are in a social network, and interests evolve in time steps:

u,-(t) = Oéll? + (1 — Oé) Z]e[n] P,Juj(t — 1), ie [n]

- social parameter « € [0, 1]

- influence network between users i and j, P;;
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Our Contributions

1. Establish the link between the online recommendation and
linear bandits

2. Apply the non-stationary setting to the classic LinREL and
Thompson Sampling algorithms from the bandit literature

3. Study tractable cases for solving the optimizations in each step
of the algorithms
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Want to minimize the aggregate regret:

R(T) = o{_ 2o (ui(), Vi (1) — (ui(2), vi(t))
Bandit setting: we notice that the aggregate reward is a linear
function of the matrix of user profiles U°:

- expected reward F(t) = ud L(t)v - function of vectorized forms of
the user and item matrices u, v.and a matrix capturing the social
evolution L(t)
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LinREL - Adapting to Recommendations

LinREL:

- arms are selected from a vector space, and the expected reward
observes an linear function of the arm

- to select an armwe use Upper Confidence Bound (UCB) principle
- a confidence bound on an estimator

- the unknown model is estimated via least square fit, either L, or
L, ellipsoids
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LinREL - Adapting to Recommendations

In our case:

- arms are the items v, modified by L(t) - non-stationary setting

- the estimator is least-squares

t—1
fio(t) = argmin > _[IX(V(7),A(7))u —r(7)|3

ueRnd T7=1
- recommendations are selected as solution to the non-convex
optimization

v(t) = argmaxmaxu' L(t)v
veB(n UEC

- we study the case of C', C? - ellipsoids in L, and L,
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LinREL - Regret

Theorem

Assume that, forany 0 < 6 < 1:

2 2\ 2
ﬁt:max{128nd|nt|n %, <§In t5> }, (1)

then, for Cy = CZ:

Pr (W, R(T) < n\/8ndﬁTTIn (1 + ZT)) >1-56, (2)

and, for Ct = C}:

Pr (vr, R(T) < nzd\/SBTTIn (1 n ZT)) >1-6. (3)
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LinREL - Computational Issues

For C" the optimization can be solved efficiently for two classes of
catalogs:

- if B is a convex set — convex optimization problem, need to solve
2n%d convex problems

- if Bis a finite subset - can check all |B| items for a total of 2nd
evaluations
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Other Algorithms

Thompson Sampling

- Bayesian interpretation, assumes a prior on ug

- In each step, samples this vector from the posterior obtained
after the feedback has been observed

- computationally efficient

- Bayesian regret of the same order as for LinREL
LinUCB

- similar to LinREL, but does not optimize over an ellipsoid

- non-convex optimization, inefficient
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Results on Synthetic Datasets

w 3
Step

o 3
Step

(a) Regret, finite set (b) Regret, L, ball
n =100, d = 20, n =100, d = 20
|B| = 1000

Synthetic dataset: randomly generated social network, user profiles,
and catalog
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Results on Real Dataset
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Figure 1: Flixstr regret n = 206, d = 28, |B| = 100

Flixstr: filtered dataset

© 1049 492 users in a social network of 7058 819 links
+ 74240 movies and 8196 077 reviews
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