
Graph stores

Ioana Manolescu ; Silviu Maniu
INRIA Saclay ; Université Paris-Sud

M2 Data and Knowledge
Université de Paris Saclay

Ioana Manolescu; Silviu ManiuArchitectures for Massive DM
D&K / UPSay 2018-2019

1

Motivation

• Graphs correspond to a natural organization of
knowledge

• They generalize
– Relations

– Trees (documents)

– Key-value pairs …

• Graph stores simplify / facilitate data representation
• They do not simplify query evaluation (and may

make it more complex)

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 2

Graph database models
• Graph = N (nodes) and E (edges, subset of E x E)
• Directed vs. undirected edges
• Nodes:
– Unlabeled
– With a single label (in some cases called type)
– With a set of attribute-value pairs
– With complex internal structure (persistent objects)

• Graphs may have semantics (RDF, RDFS)

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 3

Object-oriented databases

• 1980 – 2000 (approx)

• Idea: capitalize on the flexibility of OO programming

languages such as C++ and Java to handle databases of

persistent objects

• Object Database Management Group (ODMG): consortium

of OODB vendors which produced a standard

1. Object Model // classes, attributes, methods…

2. Object Definition Language (ODL)

// persistency roots (persistent collections)

3. Object Query Language (OQL)

// navigation from one object to its attribute

// method invocation

// structured query language

4. C++ and Java Bindings

Architectures for Massive DM

D&K / UPSay 2018-2019
Ioana Manolescu; Silviu Maniu 4

Sample OQL queries
• select a.number

from a in ATM_MACHINE.accounts_list
where a.balance > 0

• select max(select c.age from p.children c) // nested queries
from Persons p
where p.name = "Paul"

• select p.oldest_child.address.street
from Persons p
where p.lives_in("Paris") // method invocation

• select ((Student)p).grade // explicit type test
from Persons p
where "course of study" in p.activities // set attribute

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 5

Where are OODBs now?

• Object-oriented extensions are present in all major (relational)

databases à Object-Relational Database Management Systems

(ORDBMS)

– Mostly relational

– Modest but useful object extensions

• E.g. complex types in Postgres:

– create type inventory_item as (name text, supplier_id

integer, price numeric);

– create table on_hand (item inventory_item, count integer);

– insert into on_hand values (ROW('fuzzy dice', 42, 1.99),

1000);

Architectures for Massive DM

D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 6

Working with composite type in the
Postgres ORDBMS

create type inventory_item as (name text, supplier_id integer,
price numeric);
create table on_hand (item inventory_item, count integer);
select (on_hand.item).name // () specific to composite type
from on_hand
where (on_hand.item).price > 9.99;

create type complex as (r double precision, i double precision);
insert into mytab (complex_col) values ((1.1,2.2));
update mytab set complex_col = row(1.1,2.2) where ...;

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu

This would have
required a join in a
classical RDBMS!

7

The first (graph) semistructured data

model: OEM [PGW95]

OEM: Object Exchange Model, introduced as a global data model for
mediator systems

E.g. scenario where several product databases are integrated under a unique
global schema

• Some have one price, some have several (e.g. price reductions)
• Some have a description, some have a technical_description, some

have description.text, description.price…
• Some have a photo, some do not
OEM: Labeled, directed, unordered graph of objects

Every object has a unique identity
Every edge has a direction and a label
Atomic object = value (simple atomic type)
No (a priori) schema

Architectures for Massive DM

D&K / UPSay 2018-2019
Ioana Manolescu; Silviu Maniu 8

Semistructured data:

the data has internal

structure (as opposed

to a BLOB) but the

structure is not

regular, some parts

may be more

structured than

others

A restaurant OEM database

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu

&21

9

Restaurant database, serialized

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu

&21

10

Querying OEM data with LOREL [AQH+97]

Semistructured database principle: no query should fail; query
evaluation should adapt gracefully

select Guide.restaurant.address

where Guide.restaurant.address.zipcode=92310

Guide is a persistence root (name starts with a capital)

Empty results if expected labels are not found

Tries to convert zipcode to an integer; also accepts strings

select Guide.restaurant.name,
Guide.restaurant.(address?).zipcode

where Guide.restaurant.% grep "cheap"

Address is optional; "cheap" can occur anywhere in the
restaurant object

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 11

The first (graph) semistructured data

model: OEM [PGW95]

Semistructured data: the data has internal structure (opposed to e.g.
unstructured text or blob – Binary Large OBject) but the structure is not
regular

Some items have comments/bids, others do not
One description may be just text, another one have complex structure
No schema

...
...

...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial

Architectures for Massive DM

D&K / UPSay 2018-2019
Ioana Manolescu; Silviu Maniu 12

...

Storing OEM objects in LORE [MAG+97]

Objects clustered in pages in depth-first order, including simple value
leaves

Basic physical operator: Scan(obj, path)

...
...

...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

...

comment

initial bids bidsinitial

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 13

Navigation in a persistent graph
Navigation-based scan implementation (aka tuple-at-a-time, pointer-chasing)

...
...

...

open_auctions

Auctionsitem item

...

name
description

name descriptionauctionauction
object object

...

......

comment

initial bids bidsinitial

Scan(Auctions, "item"): 2 pages accessed

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 14

Navigation in a persistent graph

Scan(Auctions, "item.description"):

...
...

...

open_auctions

Auctionsitem item

...

name
description

name descriptionauctionauction
object object

...

......

comment

initial bids bidsinitial

Scan(Auctions, "open_auctions.auction.object"):
4 pages accessed

4 pages accessed

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 15

Indexing objects in a graph [MW97,MWA+98, MW99]

VIndex(l, o, pred): all objects o with an incoming l-edge, satisfying

pred
LIndex(o, l, p): all parents of o via an l-edge

– "Reverse pointers"

BIndex(x, l, y): all edges labeled l

select X

from Auction.open_auctions.auction X

where X.initial < 10

bulk
access

tuple at
a time

VIndex("initial", n1, "<10")

LIndex(n1, "initial", n2)

LIndex(n2, "auction",n3)

LIndex(n3, "open_auctions", n4)

Name(n4,"Auctions")

Return(n2)

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 16

Indexing objects in a graph [MW97]

• PIndex(p, o): all objects o reachable by the
path p

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 17

select X
from Auction.open_auctions.auction.initial X
where X.initial < 10

VIndex("initial", n1, "<10")
PIndex("Auction.
open_auctions.auction", n2)

LIndex(n1,"initial",n3)

Intersect(n2,n3)

Return(n2)

Bulk
access

Bulk
access

Tuple
at a
time

Set at
a time

The idea behind path indexes:
DataGuides [GW97]

...
...

...

open_auctions

Auctions
item item

...

name
description

name descriptionauctionauction
object object

...

......

comment

initial bids bidsinitial

...

open_auctions

Auctions

item

auction

...

object

... ...

name
description

...

comment
initial bids

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 18

The idea behind path indexes:
DataGuides [GW97]

Graph-shaped summaries of graph data
– "A-posteriori schema"
– Groups all nodes reachable

by the same paths

...

open_auctions

Auctions

item

auction

...

object

... ...

name
description

...

comment
initial bids

{oid1}

{oid2,oid15}
{oid12}

{oid15,oid16}

{oid24,oid25}
{oid20,oid21}

{oid22,oid23}
{oid30,oid31}

{oid40,oid41}

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 19

More on graph indexing
Graph indexing:

1. Partition nodes into equivalence classes
2. Store the extent of each equivalence class, use it as "pre-cooked"

answer to some queries
Equivalence notions:

1. Reachable by some common paths: DataGuide [MW97]
2. Reachable by exactly the same paths: 1-index [MS99] or, equivalently,

indistinguishable by any forward path expression
3. Indistinguishable by any (forward and backward) path expression: F&B

Index [KBN+02]
4. Indistinguishable by the (forward and backward) path expressions in

the set Q: covering index [KBN+02]
5. Indistinguishable by any path expression of length < k: A(k) index

[KSB+02]

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 20

F&B index
Group together nodes reachable by exactly the same paths
Path language:

– Navigate along one edge in both directions
– Navigate along any number of edges, in both directions

n1 ~ n2: for any path expression p, either n1 and n2 are in the
answer of p, or neither are in the answer of p.

a
a a a

b bbc

1

2 3 4 5

5 6 7 8

a
a a

bbc
7 8

1

2

65

3 4 5
Data
graph

F&B
index

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 21

Current graph stores

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 22

Neo4J basics
Data model: labeled, directed graphs
Data manipulation language (CRUD): Cypher, used to describe data
and patterns to be matched
Node descriptions in Cypher:
() // empty anonymous node
(matrix) // node whose identifier is matrix.
(:Movie) // node of type Movie
(matrix:Movie) // node whose ID is matrix and type Movie
(matrix:Movie {title: "The Matrix"})

// node with an attribute
(matrix:Movie {title: "The Matrix", released: 1997})

// node with two attributes
Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 23

Identifiers
can be used
to refer to
this node in
another
place in the
same
statement

Identifiers are
not stored in the
database (they
are related to
"variables")

Strings vs.
integers

Neo4J basics

Relationship descriptions in Cypher

-- (undirected) vs. --> or <-- (directed)

Sample relationship descriptions:

-->

-[role]-> // relationship ID

-[:ACTED_IN]-> // relationship type

-[role:ACTED_IN]->

-[role:ACTED_IN {roles: ["Neo"]}]-> // relationship with

attributes

Architectures for Massive DM

D&K / UPSay 2018-2019
Ioana Manolescu; Silviu Maniu 24

Data manipulation with Cypher
Patterns combine node and relationship descriptors:
(keanu:Person:Actor {name: "Keanu Reeves"})
-[role:ACTED_IN {roles: ["Neo"] }]-> (matrix:Movie {title: "The
Matrix"})

Data creation:
CREATE (a:Person { name:"Tom Hanks", born:1956 })

-[r:ACTED_IN { roles: ["Forrest"]}]->
(m:Movie { title:"Forrest Gump",released:1994 })

CREATE (d:Person { name:"Robert Zemeckis", born:1951 })
-[:DIRECTED]->(m)

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 25

Data manipulation with Cypher
Querying data: MATCH pattern RETURN matched variables
MATCH (p:Person { name:"Tom Hanks" })

-[r:ACTED_IN]->(m:Movie)
RETURN m.title, r.roles

Successive match-create-return steps can be used to update the
data:
MATCH (p:Person { name:"Tom Hanks" })
CREATE (m:Movie { title:"Cloud Atlas",released:2012 })
CREATE (p)-[r:ACTED_IN { roles: ['Zachry']}]->(m)
RETURN p,r,m

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 26

Data manipulation with Cypher
Inserting data only if it didn't exist:
MERGE (m:Movie { title:"Cloud Atlas" })

// create or check the existence of movie node m
ON CREATE SET m.released = 2012

// if we had to create it, set the release year
RETURN m
Insert relationship only if it did not exist:
MATCH (m:Movie { title:"Cloud Atlas" })
MATCH (p:Person { name:"Tom Hanks" })
MERGE (p)-[r:ACTED_IN]->(m)
ON CREATE SET r.roles =['Zachry']
RETURN p,r,m

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 27

Returning results with Cypher
MATCH (a { name: "A" })-[r]->(b)
RETURN *

MATCH (n)
RETURN n.age // returns null if no age

MATCH (a { name: "A" })
RETURN a.age > 30, "I'm a literal",(a)-->()

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 28

a b r
Node[0]{name:"A",happy:"Yes!",age:55} Node[1]{name:"B"} :BLOCKS[1]{}
Node[0]{name:"A",happy:"Yes!",age:55} Node[1]{name:"B"} :KNOWS[0]{}

Edge
creation
(ability to
return new
graphs)

Other Cypher operations

• Booleans:
MATCH (n)
WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name =
"Tobias") OR NOT (n.name = "Tobias" OR n.name="Peter")
RETURN n

• Optional matching

• Returned data can be: ordered, truncated, aggregated

• Unwind: unfolds a collection into a set

UNWIND[1,2,3] AS x RETURN x // three results

• Indexes: CREATE INDEX ON :Person(name)

• EXPLAIN to get the query plan

• PROFILE to measure the effort

Architectures for Massive DM

D&K / UPSay 2018-2019
Ioana Manolescu; Silviu Maniu 29

Richer path specification in SPARQL
• RDF: W3C standard for semantic Web data (graphs)

– Nodes are labeled with URIs or constants
– Edges are labeled with URIs

• SPARQL: query language for RDF data

• SPARQL 1.1 provides rich property path descriptions (think regular
expressions: http://www.w3.org/TR/sparql11-
query/#propertypaths)

{ :book1 dc:title|rdfs:label ?displayString }
{ ?x foaf:mbox <mailto:alice@example> .

?x foaf:knows/foaf:name ?name . }
{ ?x foaf:knows/^foaf:knows ?y . FILTER(?x != ?y) }
{ ?ancestor (ex:motherOf|ex:fatherOf)+ ?me}

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 30

http://www.w3.org/TR/sparql11-query/

Graph stores: summary
• Graph databases repeatedly "attempted" but not fully

"solved" yet
• Very convenient data model, natural representation
• Typically no strict schema
• No standard query language
• Semantic graphs are a particular case (RDF and SPARQL are

standards)
• Most powerful tools around: distributed graph stores (Pregel,

Spark GraphX)
– Extra dimension: graph partitioning
– Less effort on query language; in progress

Architectures for Massive DM
D&K / UPSay 2018-2019

Ioana Manolescu; Silviu Maniu 31

References
[AQH+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener. "The Lorel

Query Language for Semistructured Data", International Journal on Digital
Libraries, 1997

[GW97] R.Goldman and J.Widom. "DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases", VLDB 1997

[KBN+02] R.Kaushik, P.Bohannon, J.Naughton and H.Korth. "Covering Indexes for
Branching Path Queries", SIGMOD 2002

[MW97] J.McHugh and J.Widom. "Query Optimization for Semistructured Data",
tech. report, 1997

[MWA+98] J.McHugh, J.Widom, S.Abiteboul, Q.Luo and A.Rajaraman. "Indexing
Semistructured Data", tech. report, 1998

[MW99] J.McHugh and J.Widom. "Query Optimization for XML", VLDB 1999
[MS99] T.Milo and D.Suciu. "Index Structures for Path Expressions", ICDT 1999
[PGW95] Y.Papakonstantinou, H.Garcia-Molina and J.Widom. "Object Exchange

Across Heterogeneous Information Sources", ICDE 1995

Architectures for Massive DM
D&K / UPSay 2018-2019 Ioana Manolescu; Silviu Maniu 32

