

# Social Data Management Applications of Social and Graph Data

Silviu Maniu<sup>1</sup>

January 7th, 2019

<sup>1</sup>Université Paris-Sud

**Crawling**: the operation of obtaining a "picture" of the pages on the Web.

**Crawling**: the operation of obtaining a "picture" of the pages on the Web.

An iterative process:

- get a set of pages on the Web called seeds, and process their outgoing links,
- 2. for each outgoing link, extract it from the Web and process its outgoing links,
- 3. repeat step 2 until no pages are left.

The set of pages to be processed is called the frontier.

## Crawling: Illustration



When we have a budget and objective – focused crawling:

- budget limited Web API calls (Twitter, Foursquare, Facebook), limited money
- objective crawl only the news related to a subject, obtain the pages that are relevant to a query, etc.

Applications: Web crawling, deep Web mining, social network querying, peer-to-peer gossip.

As opposed to classical crawling (BFS is enough), there must be a way to estimate the worth of each node to be crawled.

As opposed to classical crawling (BFS is enough), there must be a way to estimate the worth of each node to be crawled.

Estimation algorithm amount to probabilistic processing: estimating the worth of each node (topic centered PageRank), or probabilistically choosing the best nodes (multi-armed bandits).

#### Web Crawling

Crowdsourcing

Some tasks cannot be performed effectively by computers (Which?)

Some tasks cannot be performed effectively by computers (Which?)

**Crowdsourcing**: asking the answers to data from Internet workers, and not from computers

Some tasks cannot be performed effectively by computers (Which?)

**Crowdsourcing**: asking the answers to data from Internet workers, and not from computers

Applications:

- image recognition
- entity resolution
- data cleaning

#### Image Recognition



Very dissimilar



## САРТСНА

# □ CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans Apart



# ReCAPTCHA



#### Crowdsourcing on the Internet





Workers: users, bloggers, Merchanical Turk workers Requesters: persons who need their data cleaned or need new knowledge Workers: users, bloggers, Merchanical Turk workers Requesters: persons who need their data cleaned or need new

knowledge

Tasks – also known as HITs (human interface tasks): questions, comments, Wikipedia edits,

Workers: users, bloggers, Merchanical Turk workers Requesters: persons who need their data cleaned or need new knowledge

Tasks – also known as HITs (human interface tasks): questions, comments, Wikipedia edits,

Incentives: usually money, but can be reputation, recognition in the community

Types of tasks:

- binary questions: is Paris the capital of France?
- open questions: what is the address of Télécom?
- comparisons: which image is "better"

- the workers' answers have to be biased by their reliability (*how to measure?*)
- the data has to be stored and processed in databases (*what kinds of databases?*)

- the workers' answers have to be biased by their reliability (*how to measure?*)
- the data has to be stored and processed in databases (what kinds of databases?)

For tasks on Amazon Mechanical Turk, they can be expressed as an workflow:

- SQL queries on the data existing in the database
- UDFs (User Defined Functions) on missing data



#### Users give different and conflicting answers - how can we solve this?

#### Users give different and conflicting answers - how can we solve this?

• Qurk uses resolution rules, such as majority voting





• same principle as Qurk, but allows for the generation of new tuples



- separation between crowd and user views
- defines fetch and resolution rules
- fetch: how data is obtained from the crowd
- resolution: how data is aggregated

- the workers' answers have to be biased by their reliability (*how to measure?*)
- the data has to be stored and processed in databases (*what kinds of databases?*)

| vvnat is the capital of France! | What | is | the | capital | of | France? |
|---------------------------------|------|----|-----|---------|----|---------|
|---------------------------------|------|----|-----|---------|----|---------|

| worker  | answer |
|---------|--------|
| Anne    | Paris  |
| Richard | Lyon   |
| Jean    | Lyon   |
| Pauline | Paris  |
| Benoit  | Paris  |
|         |        |

| What I | is | the | capital | of | France? |
|--------|----|-----|---------|----|---------|
|--------|----|-----|---------|----|---------|

| worker  | answer |
|---------|--------|
| Anne    | Paris  |
| Richard | Lyon   |
| Jean    | Lyon   |
| Pauline | Paris  |
| Benoit  | Paris  |

Aggregation rules: majority vote, average, ...

| vvnat is the capital of France! | What | is | the | capital | of | France? |
|---------------------------------|------|----|-----|---------|----|---------|
|---------------------------------|------|----|-----|---------|----|---------|

| worker  | answer |
|---------|--------|
| Anne    | Paris  |
| Richard | Lyon   |
| Jean    | Lyon   |
| Pauline | Paris  |
| Benoit  | Lyon   |

| What I | is | the | capital | of | France? |
|--------|----|-----|---------|----|---------|
|--------|----|-----|---------|----|---------|

| worker  | answer |
|---------|--------|
| Anne    | Paris  |
| Richard | Lyon   |
| Jean    | Lyon   |
| Pauline | Paris  |
| Benoit  | Lyon   |

In some cases aggregation rules can fail

What is the capital of France?

| worker  | answer |
|---------|--------|
| Anne    | Paris  |
| Richard | Lyon   |
| Jean    | Lyon   |
| Pauline | Paris  |
| Benoit  | Lyon   |

Assume that Anne and Pauline give correct answers in 90% of the cases, and Richard, Jean and Benoit only in 50% of the cases – what is the correct answer?

Let us assume labelling questions, where each worker needs to give an answer with only one true value

A simple model: a worker  $w_i$  has accuracy  $\pi_i$  – a probability of  $\pi_i$  to give the correct answer and a probability of  $1 - \pi_i$  to give the incorrect one

Let us assume labelling questions, where each worker needs to give an answer with only one true value

A simple model: a worker  $w_i$  has accuracy  $\pi_i$  – a probability of  $\pi_i$  to give the correct answer and a probability of  $1 - \pi_i$  to give the incorrect one

How to get the worker accuracies?:

- estimate their accuracy on a set of control questions
- sometimes, possible to do it without any ground truth input

| worker  | Italy | France | U.K.       | Spain     |
|---------|-------|--------|------------|-----------|
| Anne    | Rome  | Paris  | London     | Madrid    |
| Jean    | Milan | Paris  | London     | Madrid    |
| Pauline | Milan | Lyon   | Manchester | Barcelona |

| worker  | Italy | France | U.K.       | Spain     |
|---------|-------|--------|------------|-----------|
| Anne    | Rome  | Paris  | London     | Madrid    |
| Jean    | Milan | Paris  | London     | Madrid    |
| Pauline | Milan | Lyon   | Manchester | Barcelona |

What is the correct answer? - truth discovery

Assume a set of k facts in  $\{0, 1\}$ , a set of n workers  $w_i$ 

Every worker answer for every fact:

$$\boldsymbol{a} = \{a_{11}, \cdots, a_{1n}, \cdots, a_{kn}\}$$

Each worker has an accuracy  $\pi_i$  which is the probability that they answer 1 correctly

We want to derive the labels/answers, I

A standard approach to optimize probabilities – computing the likelihood given the answers:

A standard approach to optimize probabilities – computing the likelihood given the answers:

$$\mathcal{L}(oldsymbol{\pi}, oldsymbol{\phi} \mid oldsymbol{a}) = \prod_i^n \prod_j^w \phi_i^{l_i} (1 - \phi_i)^{1 - l_i} \pi_j^{y_{ij}} (1 - \pi_j)^{1 - y_{ij}}$$

where

$$y_{ij} = a_{ij}l_i + (1 - a_{ij})(1 - l_i)$$

A standard approach to optimize probabilities – computing the likelihood given the answers:

$$\mathcal{L}(\boldsymbol{\pi}, \boldsymbol{\phi} \mid \boldsymbol{a}) = \prod_{i}^{n} \prod_{j}^{w} \phi_{i}^{l_{i}} (1 - \phi_{i})^{1 - l_{i}} \pi_{j}^{y_{ij}} (1 - \pi_{j})^{1 - y_{ij}}$$

where

$$y_{ij} = a_{ij}l_i + (1 - a_{ij})(1 - l_i)$$

We want to estimate  $\pi$  and  $\phi$  by maximizing the likelihood

#### Maximizing it gives us the following estimates

$$\hat{\phi}_{i} = \frac{\sum_{j}^{n} a_{ij}\pi_{j} + \sum_{j}^{n} (1 - a_{ij})(1 - \pi_{j})}{n}$$
$$\hat{\pi}_{i} = \frac{\sum_{i}^{k} a_{ij}\phi_{i} + \sum_{i}^{k} (1 - a_{ij})(1 - \phi_{j})}{k}$$

The estimations are recursively defined – to maximize it, we can use the EM algorithm:

- 1. initialize the facts and the worker accuracies (assume workers are 100% accurate)
- 2. estimation (E-step) estimate the labels  $I_i$  based on the probabilties  $\hat{\phi}_i$
- 3. maximization (M-step) compute the worker and fact probabilities based on the labels
- 4. iterate 2 and 3 until convergence

| worker  | Italy | France | U.K.       | Spain     |
|---------|-------|--------|------------|-----------|
| Anne    | Rome  | Paris  | London     | Madrid    |
| Jean    | Milan | Paris  | London     | Madrid    |
| Pauline | Milan | Lyon   | Manchester | Barcelona |

Exercise: What is the correct answer?

| country | capital | answers | 0.7 | country         | capital       | 0.3 | country | capital |
|---------|---------|---------|-----|-----------------|---------------|-----|---------|---------|
| France  | Paris   | 7       |     | France<br>Italy | Paris<br>Rome |     | France  | Lyon    |
| France  | Lyon    | 3       |     |                 |               |     |         |         |
| Italy   | Rome    | 5       |     |                 |               |     | тату    | Rome    |

| country          | canital       | prob       | · . |         |         |     |         |         |
|------------------|---------------|------------|-----|---------|---------|-----|---------|---------|
| -                | Capital       | pion       | 0.7 | country | capital |     | country | capital |
| France<br>France | Paris<br>Lyon | 0.7<br>0.3 |     | France  | Paris   | 0.3 | France  | Lyon    |
| Italy            | Rome          | 1          |     | пату    | Kome    |     | пату    | Kome    |

Add a REPAIR-KEY construct to SQL to transform raw answers to probabilistic databases

To answer queries like *What is the correct capital of country X?* we can add a WHILE operator / fixpoint operator

To answer queries like *What is the correct capital of country X?* we can add a WHILE operator / fixpoint operator

- this will result in a Markov chain of instances, for which we need to compute the stationary distribution for a class of queries
- this is a known #P-hard problem

To answer queries like *What is the correct capital of country X?* we can add a WHILE operator / fixpoint operator

- this will result in a Markov chain of instances, for which we need to compute the stationary distribution for a class of queries
- this is a known #P-hard problem

Approximation:

- additive approximation is PTIME
- multiplicative approximation is NP-hard

Figures in the crowdsourcing section are taken from the following references.

Dawid, A. P. and Skene, A. M. (1979).
Maximum likelihood estimation of observer error-rates using the em algorithm.
Journal of the Royal Statistical Society. Series C (Applied Constraint) 20(1)

*Statistics*), 28(1).

Doan, A., Ramakrishnan, R., and Halevy, A. Y. (2011).
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4).

Li, G., Wang, J., Zheng, Y., and Franklin, M. J. (2016).
Crowdsourced data management: A survey.
IEEE Transactions on Knowledge and Data Engineering, 28(9).

# Liu, Q., Steyvers, M., and Ihler, A. (2013). Scoring workers in crowdsourcing: How many control questions are enough?

In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS'13.