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Obtaining Data on the Web

Crawling: the operation of obtaining a “picture” of the pages on
the Web.

An iterative process:

1. get a set of pages on the Web called seeds, and process their
outgoing links,

2. for each outgoing link, extract it from the Web and process its
outgoing links,

3. repeat step 2 until no pages are left.

The set of pages to be processed is called the frontier.
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Crawling: Illustration
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Focused Crawling

When we have a budget and objective – focused crawling:

• budget – limited Web API calls (Twitter, Foursquare,
Facebook), limited money

• objective – crawl only the news related to a subject, obtain the
pages that are relevant to a query, etc.

Applications: Web crawling, deep Web mining, social network
querying, peer-to-peer gossip.
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Algorithms for Focused Crawling

As opposed to classical crawling (BFS is enough), there must be a
way to estimate the worth of each node to be crawled.

Estimation algorithm amount to probabilistic processing: estimating
the worth of each node (topic centered PageRank), or
probabilistically choosing the best nodes (multi-armed bandits).
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Some tasks cannot be performed effectively by computers (Which?)

Crowdsourcing: asking the answers to data from Internet workers,
and not from computers

Applications:

• image recognition

• entity resolution

• data cleaning
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Image Recognition
Computer Vision (CV) 

6 

� Painting Similarity  

A gradient based weighted averaging method for estimation of fingerprint orientation fields. Yi Wang et 
al. DICTA’05. 
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Entity Resolution

Entity Resolution (ER) 
4 

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution.PVLDB, 
5(11):1483-1494,2012.  
J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.  Leveraging transitive relations for 
crowdsourced joins. In SIGMOD Conference, pages 229-240, 2013. 9/34



CAPTCHAOptical Character Recognition (OCR) 
3 

� ReCAPTCHA 
 
 
 
 

� CAPTCHA 
Completely Automated Public 
Turing test to tell Computers 
and Humans Apart 

Luis von Ahn, Benjamin Maurer, Colin  
McMillen, David Abraham and Manuel Blum.   
ReCAPTCHA: Human-Based Character 
Recognition via Web Security Measures.   
Science, 321: 1465-1468, 2008 
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Crowdsourcing on the InternetCrowdsourcing Platforms 
10 

� Voluntary 

� Incentive-based 
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Crowdsourcing Terms

Workers: users, bloggers, Merchanical Turk workers

Requesters: persons who need their data cleaned or need new
knowledge

Tasks – also known as HITs (human interface tasks): questions,
comments, Wikipedia edits,

Incentives: usually money, but can be reputation, recognition in the
community
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Tasks

Types of tasks:

• binary questions: is Paris the capital of France?

• open questions: what is the address of Télécom?

• comparisons: which image is “better”
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Data Issues in Crowdsourcing

Answers from crowds are unreliable, due to the workers’ answers
Why?

• the workers’ answers have to be biased by their reliability (how
to measure?)

• the data has to be stored and processed in databases (what
kinds of databases?)
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Qurk

For tasks on Amazon Mechanical Turk, they can be expressed as an
workflow:

• SQL queries on the data existing in the database

• UDFs (User Defined Functions) on missing data
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Figure 1: A system diagram of Qurk.

2. SYSTEM OVERVIEW
Qurk is architected to handle an atypical database work-

load. Human computation workloads rarely approach hun-
dreds of thousands of tuples, but an individual operation on
a tuple, encoded in a HIT, can take several minutes. Compo-
nents of the system operate asynchronously, and the results
of almost all operations are saved to avoid re-running un-
necessary steps. We now discuss the details of Qurk, which
is depicted in Figure 1.

The Query Optimizer compiles the query into a query
plan and adaptively optimizes it during query execution.
Query selectivities for HIT-based operators are not known a
priori and user metrics may change mid-query. Additionally,
the optimization function must take into account monetary
cost, the number turkers to assign to each HIT, and the
overall query performance.

The Query Executor takes as input query plans from
the query optimizer, executes the plan, and generates a set
of tasks for humans to perform. There are two key dif-
ferences from traditional executors. First, due to the la-
tency in processing HITs, the query operators communicate
asynchronously through input queues, as in the Volcano sys-
tem [3]. The join operator in Figure 1 contains two input
queues from each child operator, and creates tasks that are
sent to the Task Manager. Second, in contrast to the pull
based iterator model, results are automatically emitted from
the top-most operator and inserted into a results table. The
user can periodically poll the table for new result tuples.

The Task Manager maintains a global queue of tasks that
have been enqueued by all operators, and builds an inter-
nal representation of the HIT required to fulfill a task. The
manager takes data from the Statistics Manager to de-
termine the number of HITs, HIT assignments, and the cost
of each task, each of which can di↵er across operators. As
an optimization, the manager can batch several tasks into a
single HIT. The task manager can feed batches of tuples to
a single operator (e.g., collecting multiple tuples to sort). It
can also generate HITs from a set of operators (e.g., group-
ing multiple filter operations over the same tuple).

The HIT Compiler generates the HTML form that a
turker will fill out when they accept the HIT (along with
MTurk-specific information), and sends it to MTurk. The
result is passed to the Task Manager, which enqueues the

result in the next operator of the plan. As an optimization,
Qurk caches results in the Task Cache. If Qurk is aware
of a learning model for the task, it trains this model with
HIT results with the hope of eventually reducing monetary
costs through automation (Task Model). Once results are
emitted from the topmost operator, they are stored in the
database, which the user can check on periodically.

3. DATA MODEL AND QUERY LANGUAGE
Qurk’s data model is close to the relational model, with a

key di↵erence: two turkers may provide di↵erent responses
to the same HIT. The current method to resolve this is to run
a HIT multiple times in order to improve result confidence.
It is di�cult to quantify the uncertainty of a HIT based on
a small sample of results. In our current implementation,
we don’t incorporate an uncertainty model. Instead, Qurk
returns multiple answers to a HIT in a list, which can be
reduced using user-defined aggregates.

We use a SQL-based query language with lightweight UDFs
to give turkers instructions on completing HITs. We intro-
duce the language using two examples.

MTurk-Provided Data
In this example we show how MTurk can be used to supply

data that is returned in the query answer. Query 1 finds the
CEO’s name and phone number for a list of companies.

Query 1

SELECT companyName, findCEO(companyName).CEO,

findCEO(companyName).Phone

FROM companies

Observe that the findCEO function is used twice, and that
it returns a tuple as a result. In this case, the findCEO

function would only be run on MTurk once per company.
We cache a given result to be used in several places (even
possibly in di↵erent queries).

Task 1
TASK findCEO(String companyName)

RETURNS (String CEO,String Phone):

TaskType: Question

Text: ‘‘Find the CEO and the CEO’s phone

number for the company %s’’, companyName

Response: Form((‘‘CEO’’,String),

(‘‘Phone’’,String))

The MTurk task for the findCEO function is in Task 1.
In our language, UDFs specify the type signature for the
findCEO function, as well as a set of parameters that control
the MTurk job that is submitted. On the MTurk website, a
job is an HTML form that the turker fills out. The TaskType
field specifies that this is a question the user must answer.
The Response field specifies that the user will provide two
strings as free-text inputs that will be used to produce the
return value of the function. The Text field shows the ques-
tion that will be supplied to the turker. We provide a simple
substitution language to parameterize the question.

Table-valued Join Operator
Query 2 uses MTurk to join two tables. Suppose we have

a celebrities table with pictures of celebrities, and a spot-
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Qurk

Users give different and conflicting answers – how can we solve this?

• Qurk uses resolution rules, such as majority voting
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CrowdDB
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FROM professor p, 
  department d
WHERE p.department = d.name
  AND p.university = d.university 
  AND p.name = "Karp"

Professor Department

⋈
σ name="Karp"

p.dep=d.name

Professor

Department

⋈

σname=
   "Karp"

p.dep=d.name CrowdJoin
(Dep)

p.dep = d.name

CrowdProbe
(Professor)
name=Karp

(a) PeopleSQL query (b) Logical plan 
before optimization

(c) Logical plan 
after optimization

(d) Physical plan 

Please fill out the professor data
 Karp

University

Name

Email

Submit
Department

Please fill out the missing 
department data

University
Name

Phone
URL

Submit

Figure 3: CrowdSQL Query Plan Generation

quality control. In the current CrowdDB prototype, quality control
is carried out by a majority vote on the input provided by different
workers for the same HIT. The number of workers assigned to
each HIT is controlled by an Assignments parameter (Section 2.1).
The initial number of Assignments is currently a static parameter of
CrowdDB. As mentioned in Section 4.3, this parameter should be
set by the CrowdDB optimizer based on budget constraints set via
CrowdSQL.

The current version of CrowdDB has three Crowd operators:

• CrowdProbe: This operator crowdsources missing information
of CROWD columns (i.e., CNULL values) and new tuples. It
uses interfaces such as those shown in Figures 2a, 2d and 2e.
The operator enforces quality control by selecting the majority
answer for every attribute as the final value. That is, given the
answers for a single tuple (i.e., entity with the same key), the ma-
jority of turkers have to enter the same value to make it the final
value of the tuple. If no majority exists, more workers are asked
until the majority agrees or a pre-set maximum of answers are
collected. In the latter case, the final value is randomly selected
from the values most workers had in common.

In the case of newly created tuples it can happen that all workers
enter tuples with different primary keys, making finding a ma-
jority impossible. In this case, the operator re-posts the tasks by
leaving all non-confirmed attributes empty except the ones com-
prising the primary key. This allows CrowdDB to obtain more
answers for every key in order to form a majority quorum.

• CrowdJoin: This operator implements an index nested-loop join
over two tables, at least one of which is crowdsourced. For each
tuple of the outer relation, this operator creates one or more HITs
in order to crowdsource new tuples from the inner relation that
matches the tuple of the outer relation. Correspondingly, the in-
ner relation must be a CROWD table and the user interface to
crowdsource new tuples from the inner relation is instantiated
with the join column values of the tuple from the outer relation
according to the join predicates. The quality control technique
is the same as for CrowdProbe.

• CrowdCompare: This operator implements the CROWDEQUAL
and CROWDORDER functions described in Section 4.2. It in-
stantiates user interfaces such as those shown in Figures 2c and
2d. Note that CrowdCompare is typically used inside another
traditional operator, such as sorting or predicate evaluation. For
example, an operator that implements quick-sort might use Crowd-
Compare to perform the required binary comparisons. Quality
control is based on the simple majority vote.

6.2 Physical Plan Generation
Figure 3 presents an end-to-end example that shows how CrowdDB

creates a query plan for a simple CrowdSQL query. A query is
first parsed; the result is a logical plan, as shown in Figure 3b.

This logical plan is then optimized using traditional and crowd-
specific optimizations. Figure 3c shows the optimized logical plan
for this example. In this example, only predicate push-down was
applied, a well-known traditional optimization technique. Some
crowd-specific optimization heuristics used in CrowdDB are de-
scribed in the next subsection. Finally, the logical plan is translated
into a physical plan which can be executed by the CrowdDB run-
time system. As part of this step, Crowd operators and traditional
operators of the relational algebra are instantiated. In the example
of Figure 3, the query is executed by a CrowdProbe operator in or-
der to crowdsource missing information from the Professor table
and a CrowdJoin operator in order to crowdsource missing infor-
mation from the Department table. (In this example, it is assumed
that the Department is a CROWD table; otherwise, the CrowdJoin
operator would not be applicable.)

6.3 Heuristics
The current CrowdDB compiler is based on a simple rule-based

optimizer. The optimizer implements several essential query rewrit-
ing rules such as predicate push-down, stopafter push-down [7],
join-ordering and determining if the plan is bounded [5]. The last
optimization deals with the open-world assumption by ensuring
that the amount of data requested from the crowd is bounded. Thus,
the heuristic first annotates the query plan with the cardinality pre-
dictions between the operators. Afterwards, the heuristic tries to
re-order the operators to minimize the requests against the crowd
and warns the user at compile-time if the number of requests cannot
be bounded.

Furthermore, we also created a set of crowd-sourcing rules in or-
der to set the basic crowdsourcing parameters (e.g., price, batching-
size), select the user interface (e.g., normalized vs. denormalized)
and several other simple cost-saving techniques. For example, a
delete on a crowd-sourced table does not try to receive all tuples
satisfying the expression in the delete statement before deleting
them. Instead the optimizer rewrites the query to only look into
existing tuples.

Nevertheless, in contrast to a cost-based optimizer, a rule-based
optimizer is not able to exhaustively explore all parameters and
thus, often produces a sub-optimal result. A cost-based optimizer
for CrowdDB, which must also consider the changing conditions
on AMT, remains future work.

7. EXPERIMENTS AND RESULTS
This section presents results from experiments run with CrowdDB

and AMT. We ran over 25,000 HITs on AMT during October 2010,
varying parameters such as price, jobs per HIT and time of day. We
measured the response time and quality of the answers provided
by the workers. Here, we report on Micro-benchmarks (Section
7.1), that use simple jobs involving finding new data or making
subjective comparisons. The goals of these experiments are to ex-

• same principle as Qurk, but allows for the generation of new
tuples
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Figure 1: Components of the Deco Data Model

The raw schema corresponding to this specification of Restau-
rant is shown in the lower half of Figure 1. These relations are the
ones actually stored as tables in the back-end RDBMS. There is one
anchor table (RestA) containing the anchor attributes, and one de-
pendent table for each dependent attribute (RestD1 and RestD2);
dependent tables also contain some anchor attributes. (In general,
both anchor and dependent attributes can be a group of attributes.)
Recall that we associate cuisines with the restaurant name, and rat-
ing with a name-address pair, since different branches of a restau-
rant (such as NY and SF in Figure 1—to save space, we use abbre-
viated addresses) can have different ratings, but all branches serve
the same kind of food. We will see in Section 2.5 how the raw
schema are generated.

The top of the figure shows the original conceptual relation, which
is the outerjoin of the raw tables with certain attribute values “re-
solved” (explained shortly).

Now let us consider how our database might be populated. Per-
haps we already have some restaurant name-address pairs, with or
without ratings and/or cuisines. If so, Deco might ask human work-
ers to specify ratings and/or cuisines given a restaurant name and/or
address. Alternatively, Deco might ask human workers to specify
restaurant names and addresses given a cuisine and/or rating, or
to provide restaurant names without regard to ratings or cuisines.
Referring to Figure 1, the designer can specify fetch rules that:

• Ask for one or more restaurant name-address pairs, inserting
the obtained values into raw table RestA.

• Ask for a rating given a restaurant name and an address (e.g.,
(Limon,SF) in the figure), inserting the resulting pair into
table RestD1; similarly ask for a cuisine given a restaurant
name (e.g., Limon in the figure), inserting the resulting pair
into RestD2.

• Ask for a restaurant name given a cuisine, inserting the re-
sulting restaurant into table RestA, and inserting the restaurant-
cuisine pair into RestD2 (e.g., French in the figure).

These fetch rules are depicted at the bottom of the raw tables in
Figure 1. There are many more fetch rules that may be used to
populate this database, we return to this point later on.

Now suppose we’ve obtained values for our raw tables, but we

have inconsistencies or uncertainty in the collected data. One de-
cision we made in Deco is to provide a conceptual schema that
does not have uncertainty as a first-class component, however meta-
data in both the raw and conceptual schemas (described later in
Section 2.7) can be used to encode information about confidence,
worker quality, or other aspects of collected data that may be use-
ful to applications. To obtain conceptual relations that are “clean”
from raw tables that may contain inconsistencies, we use resolu-
tion rules, specified by the designer. In Figure 1 we illustrate two
resolution rules:

• A resolution rule for attribute rating specifying that the con-
ceptual schema contains one rating for each restaurant name-
address pair, namely the average of the ratings stored in the
raw schema.

• A resolution rule for attribute cuisine specifying that the con-
ceptual schema contains all of the cuisines for each restaurant
name from the raw schema, but with duplicates eliminated.

The semantics of a Deco database is defined based on a Fetch-
Resolve-Join sequence. Every Deco database has a (typically in-
finite) set of valid instances. A valid instance is obtained by log-
ically: (1) Fetching additional data for the raw tables using fetch
rules; this step may be skipped. (2) Resolving inconsistencies using
resolution rules for each of the raw tables. (3) Outerjoining the re-
solved raw tables to produce the conceptual relations. Note that the
“intermediate” relations between steps (2) and (3) are not depicted
in Figure 1; in the figure we resolve and join in one step. Also it
is critical to understand that the Fetch-Resolve-Join sequence is a
logical concept only. When Deco queries are executed, not only
may these steps be interleaved, but typically no conceptual data is
materialized except the query result.

Note that valid instances could contain wildly varying amounts
of data, from no tuples at all to several million tuples, and they are
all valid. So, when a user poses a query to the database, the valid
instance used to answer his query may be the one with no tuples at
all. We therefore need a mechanism to allow the user to request that
at least a certain number of tuples are returned, discussed further in
Section 3.

• separation between crowd and
user views

• defines fetch and resolution
rules

• fetch: how data is obtained
from the crowd

• resolution: how data is
aggregated
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Data Issues in Crowdsourcing

Answers from crowds are unreliable, due to the workers’ answers
Why?

• the workers’ answers have to be biased by their
reliability (how to measure?)

• the data has to be stored and processed in databases (what
kinds of databases?)
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Simple Aggregation Rules

Resolution Rules: aggregating the answer from the crowd

What is the capital of France?

worker answer

Anne Paris
Richard Lyon
Jean Lyon

Pauline Paris
Benoit Paris

Aggregation rules: majority vote, average, . . .
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Simple Aggregation Rules

Resolution Rules: aggregating the answer from the crowd

What is the capital of France?

worker answer

Anne Paris
Richard Lyon
Jean Lyon

Pauline Paris
Benoit Lyon

Assume that Anne and Pauline give correct answers in 90% of the
cases, and Richard, Jean and Benoit only in 50% of the cases –
what is the correct answer?

24/34



Worker Accuracy

Let us assume labelling questions, where each worker needs to give
an answer with only one true value

A simple model: a worker wi has accuracy πi – a probability of πi
to give the correct answer and a probability of 1− πi to give the
incorrect one

How to get the worker accuracies?:

• estimate their accuracy on a set of control questions

• sometimes, possible to do it without any ground truth input
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Example of Crowdsourced Worker Accuracy

worker Italy France U.K. Spain

Anne Rome Paris London Madrid
Jean Milan Paris London Madrid

Pauline Milan Lyon Manchester Barcelona

What is the correct answer? – truth discovery
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Truth Discovery in Crowdsourcing

Assume a set of k facts in {0, 1}, a set of n workers wi

Every worker answer for every fact:

a = {a11, · · · , a1n, · · · , akn}

Each worker has an accuracy πi which is the probability that they
answer 1 correctly

We want to derive the labels/answers, l

27/34



Maximum Likelihood

A standard approach to optimize probabilities – computing the
likelihood given the answers:

L(π,φ | a) =
n∏
i

w∏
j

φlii (1− φi )
1−liπ

yij
j (1− πj)1−yij

where
yij = aij li + (1− aij)(1− li )

We want to estimate π and φ by maximizing the likelihood
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Maximum Likelihood

Maximizing it gives us the following estimates

φ̂i =

∑n
j aijπj +

∑n
j (1− aij)(1− πj)
n

π̂i =

∑k
i aijφi +

∑k
i (1− aij)(1− φj)
k
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Maximum Likelihood Estimation (MLE)

The estimations are recursively defined – to maximize it, we can
use the EM algorithm:

1. initialize the facts and the worker accuracies (assume workers
are 100% accurate)

2. estimation (E-step) estimate the labels li based on the
probabilties φ̂i

3. maximization (M-step) compute the worker and fact
probabilities based on the labels

4. iterate 2 and 3 until convergence
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Example of Crowdsourced Worker Accuracy

worker Italy France U.K. Spain

Anne Rome Paris London Madrid
Jean Milan Paris London Madrid

Pauline Milan Lyon Manchester Barcelona

Exercise: What is the correct answer?
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Using BID Databases

country capital answers

France Paris 7
France Lyon 3
Italy Rome 5

0.7

country capital

France Paris
Italy Rome

0.3

country capital

France Lyon
Italy Rome
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Using BID Databases

country capital prob

France Paris 0.7
France Lyon 0.3

Italy Rome 1

0.7

country capital

France Paris
Italy Rome

0.3

country capital

France Lyon
Italy Rome

Add a REPAIR-KEY construct to SQL to transform raw answers to
probabilistic databases
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Using BID Databases

To answer queries like What is the correct capital of country X? we
can add a WHILE operator / fixpoint operator

• this will result in a Markov chain of instances, for which we
need to compute the stationary distribution for a class of
queries

• this is a known #P-hard problem

Approximation:

• additive approximation is PTIME

• multiplicative approximation is NP-hard
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