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Uncertain Graphs

Graphs: a natural way to represent data in various domains

e transport data: road, air links between locations

e social networks: relationships between humans, citation
networks

e interactions between proteins: contacts due to biochemical
processes
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Uncertain Graphs

Graphs: a natural way to represent data in various domains

e transport data: road, air links between locations

e social networks: relationships between humans, citation
networks

e interactions between proteins: contacts due to biochemical

processes

For all the above examples, the links are not exact. (Why?)
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(Deterministic) Graphs

e A graph G = (V, E) is formed of

e aset V of vertices (nodes)

e aset EC V x V, of edges
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Uncertain Graphs

An uncertain graph G = (V, E, p) is
formed of

e a set V of vertices (nodes)

e aset EC V x V, of edges

e a function p: E — [0,1],
representing the probability pe

that the edge e € E exists or
not

What are the possible worlds and
their probability for this model?
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Uncertain Graphs: Possible Worlds

A possible world of G, denoted G C G is a deterministic graph
G = (V, Eg) where each e € Eg is chosen from E
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Uncertain Graphs: Possible Worlds

A possible world of G, denoted G C G is a deterministic graph
G = (V, Eg) where each e € Eg is chosen from E

The probability of G is:
Pr[G] = H Pe H (1—pe)

eckEg e€E\Eg

How many possible worlds are there?
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Uncertain Graphs: Other models

Other models are possible:

e cach edge is replaced by a distribution of weights — instead of
choosing if the edge exists or not, a possible world is an
instantiation of weights

e cach edge has a formula of events, capturing correlations

e probabilities can be on nodes also — equivalent to the edge
model (Why?)
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Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

e the reachability or reliability query — get the probability that
two nodes s and t are connected
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Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

e the reachability or reliability query — get the probability that
two nodes s and t are connected

e queries on the distance distribution:

psi(d)= Y Pr[G]

Gldg(s,t)=d
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Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

e the reachability or reliability query — get the probability that
two nodes s and t are connected

e queries on the distance distribution:

psi(d)= Y Pr[G]

Gldg(s,t)=d

Multiple uses of distance queries:

e link prediction, social search, travel estimation
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Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

e the reachability or reliability query — get the probability that
two nodes s and t are connected
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Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

e the reachability or reliability query — get the probability that
two nodes s and t are connected

e queries on the distance distribution:

pee(d)= S Pr[]

Gldg(s,t)=d

8/28



Queries on Uncertain Graphs

What is the distance (in hops)
0 between b and a 7
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Queries on Uncertain Graphs

What is the distance (in hops)
0 between b and a 7

e e BFS search (or Dijkstra's
algorithms) finds the edge
b—a

e o e the cost is O(E) (linear in the

size of the graph)
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Queries on Uncertain Graphs

What is the distance (in hops)
between b and a 7
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Queries on Uncertain Graphs

What is the distance (in hops)
between b and a 7

e the edge b — a does not appear
in all possible worlds:

Pb.a(1) = p(b — a)
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Queries on Uncertain Graphs

What is the distance (in hops)
between b and a 7

e the edge b — a does not appear
in all possible worlds:

Pb.a(1) = p(b — a)

e there are two possible paths of
distance 2 (b — ¢ — a) and 3
(b—d—c— a)

Pb,a(1) = (1=pp,a(1))xp(b — ¢ — a)
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Queries on Uncertain Graphs

What is the distance (in hops)
between b and a 7
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Queries on Uncertain Graphs

What is the distance (in hops)
between b and a 7

e the number of paths is
exponential in the size of the

graph

e specifically, there are 3! paths
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Queries on Uncertain Graphs

Distance query answering in uncertain graphs is at least as hard as
in relational databases (logical formulas of paths; the number of
which can be exponential)
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Queries on Uncertain Graphs

Distance query answering in uncertain graphs is at least as hard as
in relational databases (logical formulas of paths; the number of
which can be exponential)

Computing the reachability probability (i.e, computing the
probability of there being a path between a source and a target) is
known to be #P hard [Valiant, SIAM J. Comp, 1979]
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Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling
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Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling

1. generate sampled graphs for r rounds (is this the optimal way
for an s, t distance estimation?)

2. compute the desired measure (reachability probability, distance

distributions) by averaging results
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Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling

1. generate sampled graphs for r rounds (is this the optimal way
for an s, t distance estimation?)
2. compute the desired measure (reachability probability, distance

distributions) by averaging results

Same issue: how many rounds?
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Number of Samples: Median Distance

Median distance:

D
dM(Sv t) = arg mSX {Z Ps,t(d) < }

d=0

N
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Number of Samples: Median Distance

Median distance:

D
dM(Sv t) = arg mSX {Z Ps,t(d) < }

d=0

N

Let i be the real median, and « and 3 values +e/N away from .
Then for:

> £ log(3)

r — —

2 o8l

and a good choice of c:

Pr(gi € [a,0]) >1 -0
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Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):

der(s, t) = Z d- M

dld<co 1= ps,¢(o0)
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Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):
s.¢(d
der(s, t) = Z d.L()

dld<co 1= ps,t(00)

By estimating the connectivity p, we need to sample at least:

r > max i M |O g
- ep’ 2e? &\5s

for an (e, d) approximation.
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Number of Samples In Reality

The number of needed samples can be surprisingly low (but it
depends on the actual probabilities)
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Sampling Graphs

Generating the entirety of the graph G; for each round i < r is not
optimal
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Sampling Graphs

Generating the entirety of the graph G; for each round i < r is not
optimal

e we do not need to estimate the entire graph G;

e we can start from s and do a BFS or Dijkstra search by

sampling only the outgoing edges
e based on the generated outgoing edges, we re-do the
computation for each generated outgoing node, until we find t
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Example: Median Distance k-NN

k-NN (k nearest neighbours) — finding the k nodes from s the
“closest” by some measure

e let us consider the median distance (reminder: it is the highest
distance in the distribution that has mass less or equal to 0.5)
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Example: Median Distance k-NN

k-NN (k nearest neighbours) — finding the k nodes from s the
“closest” by some measure

e let us consider the median distance (reminder: it is the highest
distance in the distribution that has mass less or equal to 0.5)

We only care about the top-k nodes, and not their values, and we
do not want to evaluate all the graph if possible

e we can evaluate a truncated distribution up to a distance D

p57t(d) If d < D
posi(d) =432 ppsi(x) if d=D
0 if d>D

e for any two nodes ti, tp, dp m(Ss, t1) < dp m(s, t2) implies
dM(S, tl) < d/\/](d, t2) 18/28



Example: Median Distance k-NN

Input: Probabilistic graph G = (V, E, P, W), node s € V,
number of samples , number k, distance increment ~

Ouput: Ty, a result set of k nodes for the k-NN query

1 Ti+0; D0

2: Initiate r executions of Dijkstra from s

3: while |T}| < k do

4 D+ D+~

5. fori«1:rdo

Continue visiting nodes in the i-th execution

of Dijkstra until reaching distance D

{7 For each node t € V visited
update the distribution pp .. {Create the distribu-
tion Pp.s.¢ if ¢ has never been visited before}

8: end for

9:  for all nodes t & T}, for which pp . exists do

>

10: if median(pp,s) < D then
11: Ty < T U {t}

12: end if

13:  end for

14: end while

e start from a small

distance D

decide whether there
are nodes to add to the
k-NN set

increase the distance,
and “re-start” each
sampled graph from the
new distance
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Example: Median Distance k-NN

The algorithm does not need to visit all nodes

Median Pruning (200 worlds)

o
~

o
N

Visited nodes
o
o

o
—
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Social Influence

Social Influence: important problem in social network, with
applications in marketing, computational advertising
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Social Influence

Social Influence: important problem in social network, with
applications in marketing, computational advertising

Objective: given a promotion budget of k social network users,
maximize the expected influence spread given some influence or
propagation model
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Social Influence

Data Model: an uncertain graph G(V, E, p)
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Social Influence

Data Model: an uncertain graph G(V, E, p)

e V and E are the social network

e pis, on each edge, the influence probability
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Influence Spread via Cascades

Independent Cascade Model:
discrete time model of propagation

@ 1. at time 0, activate seed u

2. for a node i activated at time t:
activate at time t 4+ 1 each

neighbour v with probability p;,

3. once a node is activated, it
cannot be activated again or
de-activated
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Influence Spread via Cascades

We wish to compute the expected
spread from a seed seed set S, o(S)

)

o
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Influence Spread via Cascades

We wish to compute the expected
spread from a seed seed set S, o(S)

@ By linearity of expectation:

o(u) = Z Pr(u — v)

veV

CV{' o for a seed set S, more

complicated

e same hardness as reachability

25/28



Maximizing the Influence

Influence maximization is computationally hard

Two sources of hardness:

1. computing o(S) is #P-hard (as we seen before, it is equivalent
to reachability) — Monte Carlo with additive approximations

2. computing the selection of k seeds in S is NP-hard —
maximization of a submodular function
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Maximizing the Influence

Influence maximization is computationally hard

Two sources of hardness:

1. computing o(S) is #P-hard (as we seen before, it is equivalent
to reachability) — Monte Carlo with additive approximations

2. computing the selection of k seeds in S is NP-hard —
maximization of a submodular function

Submodular function: the influence spread is submodular:

o(SU{u}) —o(S) > o(TU{u}) —o(T) if SCT
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Influence Maximization: Greedy Algorithm

We can obtain a (1 — %)—approximation factor for influence
maximization by using the greedy algorithm
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Influence Maximization: Greedy Algorithm

We can obtain a (1 — %)—approximation factor for influence

maximization by using the greedy algorithm

Steps:

1. initialize S =10

2. choose the user u that maximizes o(S U {u}) — o(S)
3.5=S5Uu

4. repeat steps 2 and 3 k times

5

. return S
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Learning Propagation Probabilities

The probability that v is influenced
by its neighbours

@\_» Pr(v) =1- H(l — Puv)
o1

28/28



Learning Propagation Probabilities

The probability that v is influenced
by its neighbours

®\/ Given a log of actions

A= {(act,u,v),... }:
p— AVLI

1. maximum likelihood: p,, = 2

2. Jaccard similarity: p,, = 4w

ulv
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