
Social Data Management
Probabilistic Graphs and Influence
Algorithms

Silviu Maniu1

December 10th, 2018

1Université Paris-Sud

1/28

Uncertain Graphs

Graphs: a natural way to represent data in various domains

• transport data: road, air links between locations

• social networks: relationships between humans, citation
networks

• interactions between proteins: contacts due to biochemical
processes

For all the above examples, the links are not exact. (Why?)

2/28

Uncertain Graphs

Graphs: a natural way to represent data in various domains

• transport data: road, air links between locations

• social networks: relationships between humans, citation
networks

• interactions between proteins: contacts due to biochemical
processes

For all the above examples, the links are not exact. (Why?)

2/28

(Deterministic) Graphs

d

c

a

b

A graph G = (V ,E) is formed of

• a set V of vertices (nodes)

• a set E ⊆ V × V , of edges

3/28

Uncertain Graphs

d

c

a

b

0.2

0.3

0.5

0.7

0.6

An uncertain graph G = (V ,E , p) is
formed of

• a set V of vertices (nodes)

• a set E ⊆ V × V , of edges

• a function p : E → [0, 1],
representing the probability pe

that the edge e ∈ E exists or
not

What are the possible worlds and
their probability for this model?

4/28

Uncertain Graphs: Possible Worlds

A possible world of G, denoted G v G is a deterministic graph
G = (V ,EG) where each e ∈ EG is chosen from E

The probability of G is:

Pr[G] =
∏

e∈EG

pe
∏

e∈E\EG

(1− pe)

How many possible worlds are there?

5/28

Uncertain Graphs: Possible Worlds

A possible world of G, denoted G v G is a deterministic graph
G = (V ,EG) where each e ∈ EG is chosen from E

The probability of G is:

Pr[G] =
∏

e∈EG

pe
∏

e∈E\EG

(1− pe)

How many possible worlds are there?

5/28

Uncertain Graphs: Other models

Other models are possible:

• each edge is replaced by a distribution of weights – instead of
choosing if the edge exists or not, a possible world is an
instantiation of weights

• each edge has a formula of events, capturing correlations

• probabilities can be on nodes also – equivalent to the edge
model (Why?)

6/28

Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

• the reachability or reliability query – get the probability that
two nodes s and t are connected

• queries on the distance distribution:

ps,t(d) =
∑

G |dG (s,t)=d

Pr[G]

Multiple uses of distance queries:

• link prediction, social search, travel estimation

7/28

Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

• the reachability or reliability query – get the probability that
two nodes s and t are connected

• queries on the distance distribution:

ps,t(d) =
∑

G |dG (s,t)=d

Pr[G]

Multiple uses of distance queries:

• link prediction, social search, travel estimation

7/28

Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

• the reachability or reliability query – get the probability that
two nodes s and t are connected

• queries on the distance distribution:

ps,t(d) =
∑

G |dG (s,t)=d

Pr[G]

Multiple uses of distance queries:

• link prediction, social search, travel estimation

7/28

Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

• the reachability or reliability query – get the probability that
two nodes s and t are connected

• queries on the distance distribution:

ps,t(d) =
∑

G |dG (s,t)=d

Pr[G]

8/28

Queries on Uncertain Graphs

Generally, the queries we want to answer are distance queries:

• the reachability or reliability query – get the probability that
two nodes s and t are connected

• queries on the distance distribution:

ps,t(d) =
∑

G |dG (s,t)=d

Pr[G]

8/28

Queries on Uncertain Graphs

d

c

a

b

What is the distance (in hops)
between b and a ?

• BFS search (or Dijkstra’s
algorithms) finds the edge
b → a

• the cost is O(E) (linear in the
size of the graph)

9/28

Queries on Uncertain Graphs

d

c

a

b

What is the distance (in hops)
between b and a ?

• BFS search (or Dijkstra’s
algorithms) finds the edge
b → a

• the cost is O(E) (linear in the
size of the graph)

9/28

Queries on Uncertain Graphs

d

c

a

b

0.2

0.3

0.5

0.7

0.6

What is the distance (in hops)
between b and a ?

• the edge b → a does not appear
in all possible worlds:

pb,a(1) = p(b → a)

• there are two possible paths of
distance 2 (b → c → a) and 3
(b → d → c → a)

pb,a(1) = (1−pb,a(1))×p(b → c → a)

10/28

Queries on Uncertain Graphs

d

c

a

b

0.2

0.3

0.5

0.7

0.6

What is the distance (in hops)
between b and a ?

• the edge b → a does not appear
in all possible worlds:

pb,a(1) = p(b → a)

• there are two possible paths of
distance 2 (b → c → a) and 3
(b → d → c → a)

pb,a(1) = (1−pb,a(1))×p(b → c → a)

10/28

Queries on Uncertain Graphs

d

c

a

b

0.2

0.3

0.5

0.7

0.6

What is the distance (in hops)
between b and a ?

• the edge b → a does not appear
in all possible worlds:

pb,a(1) = p(b → a)

• there are two possible paths of
distance 2 (b → c → a) and 3
(b → d → c → a)

pb,a(1) = (1−pb,a(1))×p(b → c → a)

10/28

Queries on Uncertain Graphs

d

c

a

b

What is the distance (in hops)
between b and a ?

• the number of paths is
exponential in the size of the
graph

• specifically, there are 3! paths

11/28

Queries on Uncertain Graphs

d

c

a

b

What is the distance (in hops)
between b and a ?

• the number of paths is
exponential in the size of the
graph

• specifically, there are 3! paths

11/28

Queries on Uncertain Graphs

Distance query answering in uncertain graphs is at least as hard as
in relational databases (logical formulas of paths; the number of
which can be exponential)

Computing the reachability probability (i.e, computing the
probability of there being a path between a source and a target) is
known to be #P hard [Valiant, SIAM J. Comp, 1979]

12/28

Queries on Uncertain Graphs

Distance query answering in uncertain graphs is at least as hard as
in relational databases (logical formulas of paths; the number of
which can be exponential)

Computing the reachability probability (i.e, computing the
probability of there being a path between a source and a target) is
known to be #P hard [Valiant, SIAM J. Comp, 1979]

12/28

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling

1. generate sampled graphs for r rounds (is this the optimal way
for an s, t distance estimation?)

2. compute the desired measure (reachability probability, distance
distributions) by averaging results

Same issue: how many rounds?

13/28

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling

1. generate sampled graphs for r rounds (is this the optimal way
for an s, t distance estimation?)

2. compute the desired measure (reachability probability, distance
distributions) by averaging results

Same issue: how many rounds?

13/28

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via
Monte Carlo sampling

1. generate sampled graphs for r rounds (is this the optimal way
for an s, t distance estimation?)

2. compute the desired measure (reachability probability, distance
distributions) by averaging results

Same issue: how many rounds?

13/28

Number of Samples: Median Distance

Median distance:

dM(s, t) = argmax
D

{
D∑

d=0

ps,t(d) 6
1
2

}

Let µ be the real median, and α and β values ±εN away from µ.
Then for:

r >
c

ε2
log(

2
δ
)

and a good choice of c :

Pr(µ̂ ∈ [α, β]) > 1− δ

14/28

Number of Samples: Median Distance

Median distance:

dM(s, t) = argmax
D

{
D∑

d=0

ps,t(d) 6
1
2

}

Let µ be the real median, and α and β values ±εN away from µ.
Then for:

r >
c

ε2
log(

2
δ
)

and a good choice of c :

Pr(µ̂ ∈ [α, β]) > 1− δ

14/28

Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):

dER(s, t) =
∑

d |d<∞

d · ps,t(d)

1− ps,t(∞)

By estimating the connectivity ρ, we need to sample at least:

r > max

{
3
ε2ρ

,
(n − 1)2

2ε2

}
· log

(
2
δ

)

for an (ε, δ) approximation.

15/28

Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):

dER(s, t) =
∑

d |d<∞

d · ps,t(d)

1− ps,t(∞)

By estimating the connectivity ρ, we need to sample at least:

r > max

{
3
ε2ρ

,
(n − 1)2

2ε2

}
· log

(
2
δ

)

for an (ε, δ) approximation.

15/28

Number of Samples In Reality

The number of needed samples can be surprisingly low (but it
depends on the actual probabilities)

tance functions differ from one another. Finally, the remark-
able difference between our functions and their competitors
draws future directions for research in applications, where
MostProbPath is currently used [38].

6. EFFICIENCY ANALYSIS
We next report empirical assessment of the efficiency of

the methods presented in this paper. We implemented all
our methods in C++. All the experiments were run on a
Linux server with 8 2.8GHz GHz AMD Opteron processors
and 64GB of memory.

We tested the performance of our algorithms on datasets
from three different real-world domains: BIOMINE, FLICKR,
and DBLP.

BIOMINE. This is a recent snapshot of the database of
the BIOMINE project [38], which is a collection of biologi-
cal interactions. Interactions are directed and labeled with
probabilities.

FLICKR. Flickr is a popular online community for shar-
ing photos. Among other activities, users can participate
in common-interest groups and form friendships. We cre-
ated a graph from an anonymized recent snapshot of Flickr.
In particular, we extracted information about users joining
interest groups. We labeled the edges with probabilities as-
suming homophily, the principle that similar interests may
indicate social ties. Namely, we computed the edge proba-
bility between any two nodes (users) as the Jaccard coeffi-
cient of the groups they belonged to. This process creates
quadratic number of edges with respect to the number of
users. We, thus, put a threshold of 0.05 to the probability
value. In order to avoid high values of the coefficient given
by users who participate only in one group, we also put a
threshold on the size of the intersection to be at least 3.
We computed this information for a small number of users
(77K), and we obtained a dense graph of 20M edges.

DBLP. We created a DBLP graph by considering an undi-
rected edge between two authors if they have coauthored a
journal paper. We labeled the edges with probabilities as
described in Section 5.

Figure 4(a) shows the edge-probability distributions in the
three datasets. Notice that DBLP has only a few proba-
bility values. Observe also that Flickr probability values
are generally very small, while BIOMINE has a more uni-
form probability distribution. Additional details about the
datasets can be found in the Appendix D.

We accumulated distances running the full BFS traversal
for 500 sampled nodes on a sample of 500 worlds. We set
the sample-size to 500 worlds after experimentally observing
that the result was stable. We present the distributions of
all the distance functions in Figure 4(b). For the expected
reliable distance we set the reliability threshold to 0.5 (we
have removed the infinity bars from the histograms (see Ap-
pendix E for details). Observe that all distance functions
yield similar distributions. Also, they all look qualitatively
similar to typical distributions of shortest path distances in
non-probabilistic networks with scale-free characteristics.

We move on to study the convergence of the distance func-
tions based on the number of worlds. In Figure 5 we plot the
Mean Squared Error (MSE) of the distance approximations
(using the distances according to a sample of 500 worlds as
the “ground truth”), for various numbers of worlds. Ob-
serve that they all converge, as expected, to 0. We conclude

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12 x 105

Edge−probability

Fr
eq

ue
nc

y

DBLP

0 5 10 15 20
0

2

4

6

8 x 104

Distance

Fr
eq

ue
nc

y

DBLP

Median
Majority
ExpectedRel

0 0.2 0.4 0.6 0.8 1
0

5

10

15 x 105

Edge−probability

Fr
eq

ue
nc

y

BIOMINE

0 5 10 15 20
0

2

4

6

8 x 104

Distance

Fr
eq

ue
nc

y

BIOMINE

Median
Majority
ExpectedRel

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12 x 106

Edge−probability

Fr
eq

ue
nc

y

FLICKR

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

Distance

Fr
eq

ue
nc

y

FLICKR

Median
Majority
ExpectedRel

(a) (b)

Figure 4: Distribution of (a) edge probabilities, (b)
distances.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of worlds

M
ea

n
Sq

ua
re

d
Er

ro
r

BIOMINE

Median
Majority
ExpectedRel
Reliability

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

Number of worlds

M
ea

n
Sq

ua
re

d
Er

ro
r

FLICKR

Median
Majority
ExpectedRel
Reliability

Figure 5: MSE vs. worlds. 200 worlds are enough.

that 200 worlds are enough to compute distances accurately
since the MSE drops below 0.2 for all datasets and all dis-
tances. Even though we had already established in theory
that a small number of samples is needed, it was surprising
to find out that 200 worlds are enough, in datasets with tens
of millions of edges.

6.1 k-NN pruning
We present an experimental evaluation of the pruning al-

gorithms introduced in Section 4.2. We implemented the
algorithms for both the median and the majority distances.
Tie-breaking was done by extending Tk(s) to include all ob-
jects tied with tk. We experiment with the two most impor-
tant components of the algorithm: efficiency and quality of
the results. We measure efficiency for each run of a k-NN
algorithm as a fraction of the number of the union of the
visited nodes in all executions of the Dijkstra algorithm,

16/28

Sampling Graphs

Generating the entirety of the graph Gi for each round i < r is not
optimal

• we do not need to estimate the entire graph Gi

• we can start from s and do a BFS or Dijkstra search by
sampling only the outgoing edges

• based on the generated outgoing edges, we re-do the
computation for each generated outgoing node, until we find t

17/28

Sampling Graphs

Generating the entirety of the graph Gi for each round i < r is not
optimal

• we do not need to estimate the entire graph Gi

• we can start from s and do a BFS or Dijkstra search by
sampling only the outgoing edges

• based on the generated outgoing edges, we re-do the
computation for each generated outgoing node, until we find t

17/28

Example: Median Distance k-NN

k-NN (k nearest neighbours) – finding the k nodes from s the
“closest” by some measure

• let us consider the median distance (reminder: it is the highest
distance in the distribution that has mass less or equal to 0.5)

We only care about the top-k nodes, and not their values, and we
do not want to evaluate all the graph if possible

• we can evaluate a truncated distribution up to a distance D

pD,s,t(d) =

ps,t(d) if d < D
∑∞

x=D ps,t(x) if d = D

0 if d > D

• for any two nodes t1, t2, dD,M(s, t1) < dD,M(s, t2) implies
dM(s, t1) < dM(d , t2)

18/28

Example: Median Distance k-NN

k-NN (k nearest neighbours) – finding the k nodes from s the
“closest” by some measure

• let us consider the median distance (reminder: it is the highest
distance in the distribution that has mass less or equal to 0.5)

We only care about the top-k nodes, and not their values, and we
do not want to evaluate all the graph if possible

• we can evaluate a truncated distribution up to a distance D

pD,s,t(d) =

ps,t(d) if d < D
∑∞

x=D ps,t(x) if d = D

0 if d > D

• for any two nodes t1, t2, dD,M(s, t1) < dD,M(s, t2) implies
dM(s, t1) < dM(d , t2) 18/28

Example: Median Distance k-NN

for a distance value D, we compute the distribution pD,s,t,
which is identical to ps,t for all distances smaller than D.
The remaining probability mass is concentrated exactly at
distance D. More precisely, we have:

pD,s,t(d) =

⎧
⎪⎨
⎪⎩

ps,t(d) if d < D∑∞
x=D ps,t(x) if d = D

0 if d > D

Our algorithm is based on the following lemma:

Lemma 2. Let dD,M(s, t) be the median distance obtained
from the distribution pD,s,t, and dM(s, t) be the actual me-
dian distance that we would have obtained from the real dis-
tribution ps,t. For any two nodes t1, t2 ∈ V , dD,M(s, t1) <
dD,M(s, t2) implies dM(s, t1) < dM(s, t2).

Proof. First notice that dD,M(s, t) < D implies dM(s, t) =
dD,M(s, t), and dD,M(s, t) = D implies dM(s, t) ≥ D. Since
dD,M(s, t1) < dD,M(s, t2) it should be dD,M(s, t1) < D, and
the lemma follows.

A direct corollary of the above lemma is that if we find the
set of k nodes Tk(s) = {t1, . . . , tk, ...} for which dD,M(s, ti) ≤
dD,M(s, t), for all ti ∈ Tk(s) and t ∈ V \Tk(s), we can declare
the set Tk(s) to be the answer to the k-NN query. This is
the core idea of our pruning scheme.

Computing the exact distribution pD,s,t is expensive, since
there are exponentially many graphs to consider. We over-
come this problem by sampling graphs and approximating
the distribution pD,s,t, with the sample distribution p̃D,s,t.

1

Observe that Lemma 2 holds for any fixed sample of worlds,
by replacing all distributions and distance values with their
sample based approximations.

The algorithm (whose pseudocode is provided in Algo-
rithm 1) proceeds by repeating the following process r times:

1. Starting from s, we perform a computation of the Dijk-
stra algorithm. Once a node is visited it never gets vis-
ited again. To apply Dijkstra in probabilistic graphs,
we proceed as in the case of deterministic graphs: when
it is required to explore one node we generate (sam-
ple) the outgoing edges from that node. We stop the
execution of the algorithm when we visit a node whose
distance exceeds D.

2. For all nodes t that were visited we either update or
instantiate their distribution p̃D,s,t. Their distance is
less than D.

After performing the above process r times, we have com-
puted the distribution p̃D,s,t for a subset of nodes t ∈ V .
These are the nodes that were visited at least once. We
have no information about nodes never encountered, those
are presumably nodes that are far away (in terms of dM)
from s and we can safely ignore them. Note that after the r
traversals are done, for each node t that was visited at least
once, the entry of p̃D,s,t that corresponds to distance D is
set to the number of traversals that the node t was not en-
countered. Therefore, the counts in all distributions p̃D,s,t

sum to r.
We note that the larger the value of the parameter D, the

more likely that the condition (d̃D,M(s, ti) ≤ d̃D,M(s, t) for

1For the remainder of the paper, we denote approximations
using the symbol .̃

ti ∈ Tk(s) and t ∈ V \ Tk(s)) holds, and a solution to the
k-NN problem is obtained. However, we do not know exactly
how large D needs to be. Our solution to this problem is
to increase D as you go and to perform all r repetitions of
the Dijkstra algorithm in parallel. The algorithm proceeds
in rounds, starting from distance D = 0, and increasing the
distance by γ. In each round, we resume all r executions of
the Dijkstra from where they had left in the previous round,
and pause them when they reach all nodes with distance at
most D. If the distribution p̃D,s,t of a node t reaches the 50%
of its mass, then t is added to the k-NN solution. All other
nodes that will be added in later steps will have greater or
equal median distances. The algorithm terminates once the
solution set contains at least k nodes. This scheme works
for any order statistic other than the median.

Algorithm 1 Median-Distance k-NN

Input: Probabilistic graph G = (V, E, P, W), node s ∈ V ,
number of samples r, number k, distance increment γ

Ouput: Tk, a result set of k nodes for the k-NN query
1: Tk ← ∅; D ← 0
2: Initiate r executions of Dijkstra from s
3: while |Tk| < k do
4: D ← D + γ
5: for i← 1 : r do
6: Continue visiting nodes in the i-th execution

of Dijkstra until reaching distance D
7: For each node t ∈ V visited

update the distribution p̃D,s,t {Create the distribu-
tion p̃D,s,t if t has never been visited before}

8: end for
9: for all nodes t ̸∈ Tk for which p̃D,s,t exists do

10: if median(p̃D,s,t) < D then
11: Tk ← Tk ∪ {t}
12: end if
13: end for
14: end while

4.4 Majority-distance k-NN pruning
The k-NN algorithm for Majority-Distance is similar to

the one for Median-Distance. There are two main differ-
ences: In the case of the median, the distance of a node t
from s is determined once the truncated distribution p̃D,s,t

reaches the 50% of its mass. In the case of the majority, let
d1 be the current majority value in p̃D,s,t, and let rt be all
Dijkstra executions in which a node t has been visited. The
condition for ensuring that d1 will be the exact majority dis-
tance is p̃D,s,t(d1) ≥ r−rt

r
. The above conditions take care

of the (worst) case that a node will appear with the same
distance value in all future Dijkstra executions.

The second difference is in the termination condition; a
node that enters the k-NN set, may not be in the final re-
sult: another node might enter at a later step of the algo-
rithm with a smaller majority distance. Candidate nodes
can be discarded if their majority distance is guaranteed to
be greater than the largest distance in the k-NN set.

5. QUALITATIVE ANALYSIS
In the previous sections we defined distance functions among

nodes that reside in probabilistic graphs and proposed algo-
rithms to compute distance and k-NN queries. Before we

1000

• start from a small
distance D

• decide whether there
are nodes to add to the
k-NN set

• increase the distance,
and “re-start” each
sampled graph from the
new distance

19/28

Example: Median Distance k-NN

The algorithm does not need to visit all nodes

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

k

Vi
sit

ed
 n

od
es

Median Pruning (200 worlds)

DBLP
BIOMINE
FLICKR

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Number of worlds

Vi
sit

ed
 n

od
es

Majority Pruning (10−NN)

DBLP
BIOMINE
FLICKR

0 10 20 30 40 500

0.2

0.4

0.6

0.8

d

Vi
sit

ed
 n

od
es

Decreasing Uncertainty (50−NN)

DBLP
BIOMINE
FLICKR

0 100 200 300 400 5000.2

0.4

0.6

0.8

1

Number of worlds

Ja
cc

ar
d

Convergence (Median, 50−NN)

DBLP
BIOMINE
FLICKR

(a) (b) (c) (d)

Figure 6: Number of visited nodes with respect to (a) k and (b) number of worlds. (c) Pruning efficiency vs.
edge-probabilities; decreasing the uncertainty boosts the pruning power. (d) Convergence of the method.

Table 1: Pruning Speedup.
Median, 200 Worlds

k 5 10 20 50
DBLP 269 267 208 185

BIOMINE 247 183 121 95
FLICKR 111 102 81 66

Majority, 10-NN
Worlds 20 50 100 200
DBLP 18 22 22 23

BIOMINE 55 59 59 65
FLICKR 3.6 3.6 3.8 4.0

over the total number of nodes in the graph. The reason is
that the number of visited nodes determines the cost (node
retrieval and histogram maintenance). Other aspects of effi-
ciency, such as the number of worlds sampled, can be taken
into account and factored in the presented graphs.

Figure 6(a) shows the fraction of visited nodes as a func-
tion of k for the median k-NN problem and 200 worlds. The
efficiency decreases sublinearly as k increases. Note that a
node is counted as visited if it is visited in at least one of the
worlds. Figure 6(b) shows the fraction of visited nodes as
a function of the number of worlds sampled for the major-
ity 10-NN problem. As expected, efficiency decreases with
the number of worlds but it stabilizes for some hundreds
of worlds. In both plots, all three datasets yield similar be-
havior. We also measured wall-clock times in CPU ticks and
report the speedup of our pruning techniques in Table 1 (av-
eraged over 100 queries). Observe that the gains are large,
and that they decrease as k increases. For example, com-
puting the median 5-NN with pruning and with 200 worlds
in BIOMINE was 247 times faster than without pruning; it
took 0.5 seconds instead of 123. The wall-clock gains with
respect to the number of worlds were almost constant.

In Figure 6(d) we present the stability of the k-NN result
for the median distance, 50-NN. We considered the result in
1000 worlds as the ground truth since it was stable. Clearly,
the solution stabilizes for a few hundred worlds.

Finally, to study the effect of the edge-probability values
on the pruning efficiency, we conducted the following exper-
iment: we boosted each edge’s probability p, by making it
pd = 1−(1−p)d. Thus, we gave each edge d chances to be in-
stantiated, instead of one. For d = 1, we have p1 = p, while
for d > 1, we have pd > p. We plot the pruning efficiency
in Figure 6(c) with respect to parameter d for the 50-NN
median experiment and 200 worlds. Clearly, the pruning
efficiency depends heavily on the uncertainty of the edges;

increasing the probabilities results to dramatic increase in
the pruning power for all datasets. We conclude that the
smaller the edge-probabilities the harder the pruning task.
Observe also in Figure 4(a) that FLICKR bears more uncer-
tainty (lower probability values). This explains the superior
performance of DBLP and BIOMINE in the runtime exper-
iments in Table 1.

7. RELATED WORK
Our work on probabilistic shortest paths is related to the

Stochastic Shortest Path problem (SSP) that has been stud-
ied in the field of Operations Research. This line of research
deals with computing the probability density function (aka
pdf) of the shortest path length for a pair of nodes [17].
By contrast, we avoid the exact computation of the pdf of a
source node to all other nodes (which in our datasets are mil-
lions) since it is not a scalable solution for the k-NN problem
under investigation. Our pruning algorithms for the median
and majority shortest path problems are tailored to compute
as little of the pdf as possible for the smaller possible fraction
of nodes with no loss in accuracy. In [14], the problem of
finding a shortest path on a probabilistic graph is addressed
by transforming each edge’s pdf to its expected value and
running Dijkstra. Clearly in our setting this expectation
is always infinite. Others investigate the pdf computation
over various application-dependent cost functions [33], while
Jaillet has considered a model with node failures [21].

Recently, probabilistic databases have received increased
interest and a number of system prototypes have been de-
veloped that can store and query probabilistic data. No-
table examples include the BayesStore [44], MayBMS [4],
MCDB [22], MystiQ [13], ORION [39], PrDB [37] and Trio [3].
These systems model data with relations and therefore, they
cannot perform shortest path computations on graphs effi-
ciently. Also, since computing exact answers to many typi-
cal SQL queries has been shown to have #P-complete data
complexity [13], research has focused on computing approx-
imate answers [25, 34].

Another important area in probabilistic relational data-
bases is the definition and efficient evaluation of top-k queries
(similar to our k-NN queries). Soliman et al. were the first to
define meaningful top-k queries in probabilistic databases [40].
Since then, a number of different definitions of top-k queries
have been proposed, as well as methods to evaluate them
efficiently [10, 11, 18, 23, 41, 45, 47]. A unified approach
that can express and generalize many of the proposed top-k
definitions has appeared recently [27].

Probabilistic-Random-Walk extends random walks, which

1003

20/28

Table of contents

Distance Estimation in Uncertain Graphs

Influence Maximization

21/28

Social Influence

Social Influence: important problem in social network, with
applications in marketing, computational advertising

Objective: given a promotion budget of k social network users,
maximize the expected influence spread given some influence or
propagation model

22/28

Social Influence

Social Influence: important problem in social network, with
applications in marketing, computational advertising

Objective: given a promotion budget of k social network users,
maximize the expected influence spread given some influence or
propagation model

22/28

Social Influence

Data Model: an uncertain graph G (V ,E , p)

• V and E are the social network

• p is, on each edge, the influence probability

23/28

Social Influence

Data Model: an uncertain graph G (V ,E , p)

• V and E are the social network

• p is, on each edge, the influence probability

23/28

Influence Spread via Cascades

u

v

w

z
y

Independent Cascade Model:
discrete time model of propagation

1. at time 0, activate seed u

2. for a node i activated at time t:
activate at time t + 1 each
neighbour v with probability piv

3. once a node is activated, it
cannot be activated again or
de-activated

24/28

Influence Spread via Cascades

u

v

w

z
y

We wish to compute the expected
spread from a seed seed set S , σ(S)

By linearity of expectation:

σ(u) =
∑

v∈V
Pr(u → v)

• for a seed set S , more
complicated

• same hardness as reachability

25/28

Influence Spread via Cascades

u

v

w

z
y

We wish to compute the expected
spread from a seed seed set S , σ(S)

By linearity of expectation:

σ(u) =
∑

v∈V
Pr(u → v)

• for a seed set S , more
complicated

• same hardness as reachability

25/28

Maximizing the Influence

Influence maximization is computationally hard

Two sources of hardness:

1. computing σ(S) is #P-hard (as we seen before, it is equivalent
to reachability) – Monte Carlo with additive approximations

2. computing the selection of k seeds in S is NP-hard –
maximization of a submodular function

Submodular function: the influence spread is submodular:

σ(S ∪ {u})− σ(S) > σ(T ∪ {u})− σ(T) if S ⊆ T

26/28

Maximizing the Influence

Influence maximization is computationally hard

Two sources of hardness:

1. computing σ(S) is #P-hard (as we seen before, it is equivalent
to reachability) – Monte Carlo with additive approximations

2. computing the selection of k seeds in S is NP-hard –
maximization of a submodular function

Submodular function: the influence spread is submodular:

σ(S ∪ {u})− σ(S) > σ(T ∪ {u})− σ(T) if S ⊆ T

26/28

Influence Maximization: Greedy Algorithm

We can obtain a (1− 1
ε)-approximation factor for influence

maximization by using the greedy algorithm

Steps:

1. initialize S = ∅
2. choose the user u that maximizes σ(S ∪ {u})− σ(S)
3. S = S ∪ u

4. repeat steps 2 and 3 k times

5. return S

27/28

Influence Maximization: Greedy Algorithm

We can obtain a (1− 1
ε)-approximation factor for influence

maximization by using the greedy algorithm

Steps:

1. initialize S = ∅
2. choose the user u that maximizes σ(S ∪ {u})− σ(S)
3. S = S ∪ u

4. repeat steps 2 and 3 k times

5. return S

27/28

Learning Propagation Probabilities

u
v

w

z

y

The probability that v is influenced
by its neighbours

Pr(v) = 1−
∏

u

(1− puv)

Given a log of actions
A = {(act, u, v), . . . }:
1. maximum likelihood: pvu = Avu

Av

2. Jaccard similarity: pvu = Avu
Au|v

28/28

Learning Propagation Probabilities

u
v

w

z

y

The probability that v is influenced
by its neighbours

Pr(v) = 1−
∏

u

(1− puv)

Given a log of actions
A = {(act, u, v), . . . }:
1. maximum likelihood: pvu = Avu

Av

2. Jaccard similarity: pvu = Avu
Au|v

28/28

Acknowledgments

Figures in slides 16 and 20 are taken from [Potamias et al., 2010].

References i

Ball, M. O. (1986).
Computational complexity of network reliability analysis:
An overview.
IEEE Transactions on Reliability, 35(3).

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2010).
Learning influence probabilities in social networks.
In Proceedings of the Third ACM International Conference on
Web Search and Data Mining, WSDM ’10.

References ii

Kempe, D., Kleinberg, J., and Tardos, E. (2003).
Maximizing the spread of influence through a social
network.
In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
’03.

Potamias, M., Bonchi, F., Gionis, A., and Kollios, G. (2010).
K-nearest neighbors in uncertain graphs.
Proc. VLDB Endow., 3(1-2).

	Distance Estimation in Uncertain Graphs
	Influence Maximization

