Link Prediction Lab

Social Data Management

January 14th, 2019

The goal of this lab session is to implement queries on probabilistic graphs and the greedy influence maximization algorithm, using Python and the **networkx** package, by using a Jupyter notebook. Documentation to support this lab can be found at:

- NetworkX: https://networkx.github.io/documentation/stable/,
- Matplotlib: https://matplotlib.org/,
- Tutorial on how to use NetworkX and Matplotlib in Jupyter: https://github.com/networkx/notebooks.

1 Installation and First Steps

- 1. If not present, install Jupyter and the NetworkX and Matplotlib Python packages.
- 2. Download the Jupyter notebook called lab3.ipynb and the graph karate. The files must be in the same folder.
- 3. Run the Jupyter notebook, and check that all cells are executed correctly.

2 Link Scoring Functions

In this exercise we will implement the link scoring functions for a variety of possible scoring functions. An example implementation is given in the method common_neighbors, for a given graph G and a pair of nodes i and j. Ideally, all functions should have the signature $score_func(G,i,j)$ so that they can be easily used in the link prediction functions (next exercise).

Implement the following link scoring functions:

- 1. Neighbour-based measures: Jaccard coefficient, and preferential attachment measure
- 2. Inverse Distance score
- 3. Personalized PageRank score (use a fixed value of $\alpha = 0.2$)
- 4. Random, in which the link is given a random score in [0, 1]

3 Link Prediction

Using the already implemented method link_list, create a method link_prediction(G,k,i,score_func) where the parameters are:

- G the input graph,
- k the number of links to be predicted,
- i the node starting from which the link needs to be predicted, and
- score_func, the function for link scoring (implemented in the previous exercise) as a parameter.

The link_prediction function returns the best k new links, starting from i, by their value of score_func.

- 1. Implement and test the link_prediction function, for a variety of k values and link score functions.
- 2. Evaluate link prediction for karate by the *leave-one-out* method. Proceed as follows: remove one (existing) link from the network, and try to guess it using the resulting graph and the method link_prediction. Repeat this process for *all* links in the graph.
- 3. Track the precision and recall in function of the parameters k and score_func. Precision and recall are defined as follows:

$$\begin{aligned} \text{precision} &= \frac{\text{true positives}}{\text{true positives} + \text{false positives}}, \\ \text{recall} &= \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}. \end{aligned}$$