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Smartphone Viruses
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Network Epidemics

Network epidemics — a framework allowing quantitative analysis and
forecasting of infectious phenomena, in which infections spread through
networks facilitated by agents

Occurs in diverse domains:

e biology: pathogens (influenza, SARS, tuberculosis, .. .)
e digital: computer viruses and worms

e social: information cascades (innovation, products, memes)
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Networks and Agents
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Epidemic Modeling

The network epidemic modeling rests on two main hypotheses:

1. compartmentalization

2. homogeneous mixing
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Compartmentalization

Classify each individual (node) depending of the state (or compartment) of

infection:

e susceptible (S): healthy individuals
e infectious (I): contagious individuals having contracted the pathogen

e recovered (R): individuals having been infected before, but have
recovered
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Homogeneous Mixing

The infection occurs no matter the individual concerned, or their
characteristics.
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Susceptible-Infected (SI) Model

Assumptions and notation:

e consider N individuals, each having (k) contacts

e infections occur in time increments

S(t) number of susceptible individuals at time t

I(t) number of infected individuals at time ¢
S5(0) = N and /1(0) =0

e likelihood of infection is a parameter (3

Assuming /(0) = 1, how many will be infected at a later time ¢7
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Susceptible-Infected (SI) Model

SI Model: an individual can be in two states, healthy (S) or sick (1),
becoming infected at a rate 3
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Susceptible-Infected (SI) Model

I(t) changes at the rate

Solving for i(t) = I(t)/N (fraction of individuals infected):

. i(0)el ke
(&)= T=50) + i(0)ermre M)

B(k) is called transmission rate
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Susceptible-Infected (SI) Model

Characteristic time — time to reach a 1/e ~ 0.36 fraction of infected

individuals
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Susceptible-Infected-Susceptible (SIS) Model

Same as Sl, but nodes can recover at a rate pu
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Susceptible-Infected-Susceptible (SIS) Model

Two possible states:

e endemic state, u < B(k), not everyone is infected, but i reaches a
plateau
e disease-free state, u > [(k), i decreases with time, so the disease dies

out
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Susceptible-Infected-Susceptible (SIS) Model

Characteristic time )

~ p(Ro—1)
depends on the basic reproductive number

gy = B
"

T

Depending on Ry:

e Ry >1, 7> 0, epidemic is in endemic state,

e otherwise disease free.
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Susceptible-Infected-Recovered (SIR) Model

Nodes can be recovered, governed by a recovery rate r

No closed form solution for i — it depends on the rate of s(t) and r(t)
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Susceptible-Infected-Recovered (SIR) Model
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Model Overview
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Taking Network into Account

Previous models do not use the actual network, and capture only

behaviour on aggregate

They take into account (k) which is not always a good approximation for
e.g., scale-free networks

We should study these models on some approximation of real networks —

degre-block approximation
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Degree-Block Approximation
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S| Model on Networks

Assumes that nodes with the same degree are statistically equivalent

So i depends on k also:

i .
% = B(1 — ix)kOy,

. I . k(k) =1 /s
=k o1+ (et —1
=i = (4 g g - ).
where the characteristic time depends on the variance of the degree also:
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S| Model on Networks
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S| Model on Networks

Depending on the type of network, we have different results:

e Random networks, where (k?) = (k)((k) + 1) we are in the same case

as homogeneous networks (so the classic SI model)

e Scale-free networks, v > 3, (k) and (k?) are finite, so T
finite, so similar to random networks

Sl is also

e Scale-free networks, v < 3, <k2> diverges, which means that S50
— spread in scale-free networks is instantaneous (vanishing

characteristic time) Why?
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SIS Model on Networks

More realistic model: some nodes revert to initial state (S)

Straightforward extension from SlI, by taking into account u:
Ol
— = B(1 — ix)kOk — piy,
5r = P = ik)kOk — i
Characteristic time changes to:

SIS _ (k)
B(k?) — p(k)
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SIS Model on Networks

In SIS, the spread depends both on 3 and p and the difference between
the two values

Spreading rate:

L0

W

We have to check how this relates to an epidemic threshold Ao
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Epidemic Threshold in SIS

Random Networks — infection persist after \. = mﬁ; if A < A\ the

network is disease free

Scale-Free Networks — epidemic threshold is Ao = % — 0; the disease
spreads even for very low A values (vanishing epidemic threshold)
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Epidemics in Scale-Free Networks

Main takeaways:

e characteristic time 7 = 0, viruses can reach most nodes
instantaneously

e epidemic threshold A\. = 0, viruses with small spreading rate can
persist

Result from the fact that hubs can propagate to many neighbours
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Effect of Degree Correlations

e degree correlations alter the threshold A\, (assortativity decreases it)

e in scale free networks, the threshold still vanishes no matter its

correlations

e since hubs are the first affected, assortativity accelerates the spread
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Effect of Communities in Information Spread

Inside communities, ties between nodes are closer (strong ties), and
between communities ties are weak

Direct influence over information spread:

e information spreads fast inside communities — due to the strong ties

e information is trapped in a community — due to the weak ties, it is
less likely to “escape” a community
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Types of Information Spread

Simple contagion: studied until now, i.e., simple contact suffices for
infection

Complex contagion: information needs reinforcement, i.e., multiple sources
of infection or information
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Types of Information Spread
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Immunization

How do we stop an infection in a network?

Objective: immunize a fraction g. of nodes so that A goes under \;
immunized nodes are “invisible”

Strategies:

e random

e selective
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Random Immunization in Random Networks

Fraction g. chosen randomly

We want that:

(1-g)B - 1
1 (k) + 1
SO: - B M
S (CESY

The more nodes are immunized the better, but still less that the total
number of nodes
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Random Immunization in Heterogeneous Networks

Heterogeneous networks — high (k2)

We want that:

k)

(1 - gc) = @7
(k)
&= e

We need to immunize a large fraction of nodes in the networks

For scale-free networks, g — 1
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Selective Immunization in Scale-Free Networks

We should select hubs first, so that the network becomes disconnected —

but the actual network is not always known

Strategy for selective immunization based on friendship paradox: your
friends are more popular than you

1. choose randomly a fraction p of nodes — Group 0

2. for each node in Group 0, select a link randomly — put resulting nodes
in Group 1

3. immunize Group 1

Why does it work? — nodes in Group 1 have higher average degree than
those in Group 0
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Selective Immunization in Scale-Free Networks
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