

Social Data Management Spreading Phenomena

Silviu Maniu¹

December 10th, 2018

¹Université Paris-Sud

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

SARS and Super-spreaders

Bubonic Plague

4/41

Smartphone Viruses

Network epidemics – a framework allowing quantitative analysis and forecasting of infectious phenomena, in which *infections* spread through *networks* facilitated by *agents*

Occurs in diverse domains:

- biology: pathogens (influenza, SARS, tuberculosis, ...)
- digital: computer viruses and worms
- social: information cascades (innovation, products, memes)

phenomenon	agent	network
rumour spreading	information, memes	communication
innovation diffusion	ideas	communication
computer virus	malware	Internet
diseases	pathogen	human-human network
bedbugs	insects	hotel-guest network

The network epidemic modeling rests on two main hypotheses:

- 1. compartmentalization
- 2. homogeneous mixing

Classify each individual (node) depending of the state (or compartment) of infection:

- susceptible (S): healthy individuals
- infectious (I): contagious individuals having contracted the pathogen
- recovered (R): individuals having been infected before, but have recovered

The infection occurs no matter the individual concerned, or their characteristics.

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

Assumptions and notation:

- consider N individuals, each having $\langle k \rangle$ contacts
- infections occur in time increments
- S(t) number of susceptible individuals at time t
- I(t) number of infected individuals at time t
- S(0) = N and I(0) = 0
- likelihood of infection is a parameter β

Assuming I(0) = 1, how many will be infected at a later time t?

SI Model: an individual can be in two states, *healthy* (S) or *sick* (I), becoming infected at a rate β

I(t) changes at the rate

$$\frac{\partial I(t)}{\partial t} = \beta \langle k \rangle \frac{S(t)I(t)}{N}$$

Solving for i(t) = I(t)/N (fraction of individuals infected):

$$i(t) = \frac{i(0)e^{\beta\langle k\rangle t}}{1 - i(0) + i(0)e^{\beta\langle k\rangle t}},$$
(1)

 $\beta \langle k \rangle$ is called transmission rate

Susceptible-Infected (SI) Model

Characteristic time – time to reach a $1/e \approx 0.36$ fraction of infected individuals

Susceptible-Infected-Susceptible (SIS) Model

Same as SI, but nodes can recover at a rate μ

$$\frac{\partial i}{\partial t} = \beta \langle k \rangle i (1 - i) - \mu i$$

and

$$i = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{C e^{(\beta \langle k \rangle - \mu)t}}{1 + C e^{(\beta \langle k \rangle - \mu)t}}$$

Susceptible-Infected-Susceptible (SIS) Model

Two possible states:

- endemic state, $\mu < \beta \langle k \rangle$, not everyone is infected, but i reaches a plateau
- disease-free state, $\mu>\beta\langle \mathbf{k}\rangle$, i decreases with time, so the disease dies out

Characteristic time

$$\tau = \frac{1}{\mu(R_0 - 1)}$$

depends on the basic reproductive number

$$R_0 = \frac{\beta \langle k \rangle}{\mu}$$

Depending on R_0 :

- $R_0>1$, au>0, epidemic is in endemic state,
- otherwise disease free.

Nodes can be recovered, governed by a recovery rate r

No closed form solution for i – it depends on the rate of s(t) and r(t)

Susceptible-Infected-Recovered (SIR) Model

$$\begin{aligned} \frac{\partial s}{\partial t} &= -\beta \langle k \rangle (1 - r - i) \\ \frac{\partial i}{\partial t} &= -\mu i + \beta \langle k \rangle (1 - r - i) \\ \frac{\partial r}{\partial t} &= \mu i \end{aligned}$$

20/41

Model Overview

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

Previous models do not use the actual network, and capture only behaviour on aggregate

They take into account $\langle k\rangle$ which is not always a good approximation for e.g., scale-free networks

We should study these models on some approximation of real networks – degre-block approximation

Degree-Block Approximation

Assumes that nodes with the same degree are statistically equivalent

So *i* depends on *k* also:

$$\begin{split} \frac{\partial i_k}{\partial t} &= \beta (1 - i_k) k \Theta_k, \\ i_k &= \frac{I_k}{N_k} = i_0 \left(1 + \frac{k \langle k \rangle - 1}{\langle k^2 \rangle - \langle k \rangle} (e^{t/\tau^{SI}} - 1) \right), \end{split}$$

where the characteristic time depends on the variance of the degree also:

$$\tau^{\mathsf{SI}} = \frac{\langle k \rangle}{\beta(\langle k^2 \rangle - \langle k \rangle)}$$

SI Model on Networks

Depending on the type of network, we have different results:

- Random networks, where $\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1)$ we are in the same case as homogeneous networks (so the classic SI model)
- Scale-free networks, $\gamma \ge 3$, $\langle k \rangle$ and $\langle k^2 \rangle$ are finite, so τ^{SI} is also finite, so similar to random networks
- Scale-free networks, γ < 3, ⟨k²⟩ diverges, which means that τ^{SI} → 0

 spread in scale-free networks is instantaneous (vanishing characteristic time) Why?

More realistic model: some nodes revert to initial state (S)

Straightforward extension from SI, by taking into account μ :

$$\frac{\partial i_k}{\partial t} = \beta (1 - i_k) k \Theta_k - \mu i_k,$$

Characteristic time changes to:

$$\tau^{\rm SIS} = \frac{\langle k \rangle}{\beta \langle k^2 \rangle - \mu \langle k \rangle}$$

In SIS, the spread depends both on β and μ and the difference between the two values

Spreading rate:

$$\lambda = \frac{\beta}{\mu}$$

We have to check how this relates to an epidemic threshold λ_c

Random Networks – infection persist after $\lambda_c = \frac{1}{\langle k \rangle + 1}$; if $\lambda < \lambda_c$ the network is disease free

Scale-Free Networks – epidemic threshold is $\lambda_c = \frac{\langle k \rangle}{\langle k^2 \rangle} \rightarrow 0$; the disease spreads even for very low λ values (vanishing epidemic threshold)

Main takeaways:

- characteristic time $\tau = 0$, viruses can reach most nodes instantaneously
- epidemic threshold $\lambda_c =$ 0, viruses with small spreading rate can persist

Result from the fact that hubs can propagate to many neighbours

- degree correlations alter the threshold λ_c (assortativity decreases it)
- in scale free networks, the threshold still vanishes no matter its correlations
- since hubs are the first affected, assortativity accelerates the spread

Inside communities, ties between nodes are closer (strong ties), and between communities ties are weak

Direct influence over information spread:

- information spreads fast inside communities due to the strong ties
- information is trapped in a community due to the weak ties, it is less likely to "escape" a community

Simple contagion: studied until now, i.e., simple contact suffices for infection

Complex contagion: information needs *reinforcement*, i.e., multiple sources of infection or information

Types of Information Spread

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

How do we stop an infection in a network?

Objective: immunize a fraction g_c of nodes so that λ goes under λ_c ; immunized nodes are "invisible"

Strategies:

- random
- selective

Fraction g_c chosen randomly

We want that:

$$rac{(1-g_c)eta}{\mu}=rac{1}{\langle k
angle+1},$$
 $g_c=1-rac{\mu}{eta(\langle k
angle+1)}$

SO:

The more nodes are immunized the better, but still less that the total number of nodes

Heterogeneous networks – high $\langle k^2 \rangle$

We want that:

$$(1-g_c)\frac{\beta}{\mu} = \frac{\langle k \rangle}{\langle k^2 \rangle},$$

SO:

$$g_c = 1 - rac{\mu \langle k
angle}{eta \langle k^2
angle}$$

We need to immunize a large fraction of nodes in the networks For scale-free networks, $g_c
ightarrow 1$

We should select hubs first, so that the network becomes *disconnected* – but the actual network is not always known

Strategy for selective immunization based on friendship paradox: *your friends are more popular than you*

- 1. choose randomly a fraction p of nodes Group 0
- 2. for each node in *Group 0*, select a link randomly put resulting nodes in *Group 1*
- 3. immunize Group 1

Why does it work? – nodes in Group 1 have higher average degree than those in Group 0

Selective Immunization in Scale-Free Networks

Figures in slides 3, 4, 12, 14, 16, 18, 19, 20, 23, 25, 29, 33, 34, and 40 taken from the book "Network Science" by A.-L. Barabási. The contents is partly inspired by the flow of Chapter 10 of the same book. http://barabasi.com/networksciencebook/

Castellano, C. and Pastor-Satorras, R. (2010). **Thresholds for epidemic spreading in networks.** *Phys. Rev. L.*, 105 21.

Pastor-Satorras, R. and Vespignani, A. (2001).Epidemic spreading in scale-free networks.*Phys. Rev. L.*, 86.