
Web Data Models
Silviu Maniu

JSON Schema

JSON Schema
• JSON tends to be more popular than XML lately

(almost all Web APIs provide at least one JSON
endpoint)

• not much work on formalisms of JSON schema

• multiple efforts to provide JSON with a schema like
in XML, however not standardized

• most used is JSON Schema (https://json-
schema.org/, currently at draft 7)

https://json-schema.org/
https://json-schema.org/

JSON Schema: Principles

• just as in XML Schema, the JSON Schema is a
JSON document

• it specifies the types that each has, its restrictions,
and the required types

JSON Schema: Simple
Example

{
“$schema”: “http://json-schema.org/draft-07/schema#",
“title”: “Book”,
“type”: “object”,
“properties”: {
“title”: {
“description”: “The title of the book”,
“type”: “string”

},
“year”: {
“description”: “Year published”,
“type”: “integer”

}
},
“required”: [“title”]

}

http://json-schema.org/draft-07/schema#

JSON Schema: General
Structure

• for each item one can specify:

1. its type (type): string, number, integer,
object, array

2. its properties (for object), items (for array),
or pattern (for string)

3. some restrictions (similar to XML schema)

JSON Schema: Grammar

ing details with respect to these specifications; their formal
definition can be found in [5, 18].

JSON Values. The JSON format defines the following
types of values. First, true, false and null are JSON val-
ues. Any decimal number (e.g. 3.14, 23) is also JSON value,
called a number. Furthermore, if s is a string of unicode
characters then "s" is a JSON value, called a string value.
Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pair-
wise distinct string values, then o = {s1 : v1, . . . , sn : vn} is
a JSON value, called an object. In this case, each si : vi is
called a key-value pair of o. Finally, if v1, . . . , vn are JSON
values then a = [v1, . . . , vn] is a JSON value called an array.
In this case v1, . . . , vn are called the elements of a.

We sometimes use the term JSON document (or just doc-
ument) to refer to JSON values. The following syntax is
normally used to navigate through JSON documents. If J
is an object, then J [“key”] is the value of J whose key is
the string “key”. Likewise, if J is an array, then J [n], for a
natural number n, contains the (n-1)-th element of J .

JSON Pointer. JSON Pointers are intended to retrieve
values from JSON documents. Formally, a JSON pointer is
a string of the form p = /w1/ · · · /wn, for w1, . . . , wn valid
strings using any unicode character.

The evaluation Eval(p, J) of a pointer p over a document
J is a JSON value that is recursively defined as follows.
Assume that p = /w/p

0. Then Eval(p, J) is:

• the value Eval(/p0, J [n]), if J is an array, w is the base 10
representation of the number n and J has at least n + 1
elements; or

• the value Eval(/p0, J [w]), if J is an object that has a pair
with key "w" (note that we have to put the value of w
between quotes to make it a JSON string); or

• the value null otherwise.

Example 1. Consider now an array storing names J =

[{"name": "Joe"},{"name": "Mike"}]. To extract the

value of the key "name" for the second object in the array,

we can use the JSON pointer p = /1/name which first nav-

igates to the second item of the array (thus obtaining the

object {"name": "Mike"}) and retrieves the value of the

key "name" from here. Therefore Eval(p, J) ="Mike".

2.2 Formal Grammar for JSON Schema
JSON Schema can specify any of the six types of

valid JSON documents: objects, arrays, strings, numbers,
boolean values and null; and for each of these types there are
several keywords that help shaping and restricting the set
of documents that a schema specifies. As such, in the space
given it would be cumbersome to define JSON Schema in its
completeness. Instead, we have identified a core fragment
that is equivalent to the full JSON Schema specification,
and present now its formal grammar and semantics. All of
the remaining functionalities in the o�cial JSON Schema
draft can be expressed using the functionalities included in
this paper. The complete definition can be found in our
online appendix [25, 1].

The formal grammar is presented in tables (2-5). It is
specified in a visual-based extended Backus-Naur form [28],
where all non-terminals are written in bold (and thus every-
thing not in bold is a terminal). Also, for readability, we
use string to represent any JSON string, n to represent any
positive integer, r to represent any decimal number, Jval to

JSDoc := { (defs ,)? JSch }
defs := "definitions": { string : { JSch }

(, string : { JSch })⇤}
JSch := strSch | numSch | intSch | objSch |

arrSch | refSch | not | allOf | anyOf | enum
not := "not": { JSch }
allOf := "allOf": [{ JSch } (, { JSch })⇤]
anyOf := "anyOf": [{ JSch } (, { JSch })⇤]
enum := "enum": [Jval (, Jval)⇤]
refSch := "$ref": "# JPointer"

Table 2: Grammar for JSON Schema Documents

strSch := "type": "string" (, strRes)⇤

strRes := minLength | maxLength | pattern
minLength := "minLength": n

maxLength := "maxLength": n

pattern := "pattern": "regExp"

Table 3: Grammar for string schemas

represent any possible JSON document and regExp to rep-
resent any regular expression. Note that when these values
get instantiated they behave as terminals.
Remark . Since every JSON Schema document is also a
JSON document, we assume that duplicate keywords cannot
occur at the same nesting level.

Overall Structure. Table 2 defines the overall structure of
JSON Schema document (JSDoc). It consists of two parts:
an optional definitions section (defs), that is intended to
store other schema definitions to be reused later on, and a
mandatory schema section (JSch) where the actual schema
is specified. In turn, each schema can be either a string

schema (strSch), a number schema (numSch), an inte-

ger schema (intSch), an object schema (objSch), an array

schema (arrSch), a reference schema (refSch), a boolean
combination of schemas using not, allOf or anyOf, or sim-
ply the enumeration of a set of values (enum). Note how
reference schemas make use of JSON pointer (JPointer).

Strings. String schemas are formed according to Table 3.
We first state that we wish to represent a string using the
"type": "string" pair, and then we may add additional
restrictions to bound the length of the strings or to state
that they satisfy a certain regular expression regExp. We
illustrate some of these concepts by means of an example.

Example 2. The following schema S1 specifies strings

according to an email pattern. It has no definitions section.

{

"type": "string",

"pattern": "[A-z]*@ciws.cl"

}

The next schema, S2, includes schema S1 as a definition,

under the "email" key.

{

"definitions": {

"email": {

"type": "string",

"pattern": "[A-z]*@ciws.cl"

}

},

"not": {"$ref": "#/definitions/email"}

}

JSON Schema: Strings

ing details with respect to these specifications; their formal
definition can be found in [5, 18].

JSON Values. The JSON format defines the following
types of values. First, true, false and null are JSON val-
ues. Any decimal number (e.g. 3.14, 23) is also JSON value,
called a number. Furthermore, if s is a string of unicode
characters then "s" is a JSON value, called a string value.
Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pair-
wise distinct string values, then o = {s1 : v1, . . . , sn : vn} is
a JSON value, called an object. In this case, each si : vi is
called a key-value pair of o. Finally, if v1, . . . , vn are JSON
values then a = [v1, . . . , vn] is a JSON value called an array.
In this case v1, . . . , vn are called the elements of a.

We sometimes use the term JSON document (or just doc-
ument) to refer to JSON values. The following syntax is
normally used to navigate through JSON documents. If J
is an object, then J [“key”] is the value of J whose key is
the string “key”. Likewise, if J is an array, then J [n], for a
natural number n, contains the (n-1)-th element of J .

JSON Pointer. JSON Pointers are intended to retrieve
values from JSON documents. Formally, a JSON pointer is
a string of the form p = /w1/ · · · /wn, for w1, . . . , wn valid
strings using any unicode character.

The evaluation Eval(p, J) of a pointer p over a document
J is a JSON value that is recursively defined as follows.
Assume that p = /w/p

0. Then Eval(p, J) is:

• the value Eval(/p0, J [n]), if J is an array, w is the base 10
representation of the number n and J has at least n + 1
elements; or

• the value Eval(/p0, J [w]), if J is an object that has a pair
with key "w" (note that we have to put the value of w
between quotes to make it a JSON string); or

• the value null otherwise.

Example 1. Consider now an array storing names J =

[{"name": "Joe"},{"name": "Mike"}]. To extract the

value of the key "name" for the second object in the array,

we can use the JSON pointer p = /1/name which first nav-

igates to the second item of the array (thus obtaining the

object {"name": "Mike"}) and retrieves the value of the

key "name" from here. Therefore Eval(p, J) ="Mike".

2.2 Formal Grammar for JSON Schema
JSON Schema can specify any of the six types of

valid JSON documents: objects, arrays, strings, numbers,
boolean values and null; and for each of these types there are
several keywords that help shaping and restricting the set
of documents that a schema specifies. As such, in the space
given it would be cumbersome to define JSON Schema in its
completeness. Instead, we have identified a core fragment
that is equivalent to the full JSON Schema specification,
and present now its formal grammar and semantics. All of
the remaining functionalities in the o�cial JSON Schema
draft can be expressed using the functionalities included in
this paper. The complete definition can be found in our
online appendix [25, 1].

The formal grammar is presented in tables (2-5). It is
specified in a visual-based extended Backus-Naur form [28],
where all non-terminals are written in bold (and thus every-
thing not in bold is a terminal). Also, for readability, we
use string to represent any JSON string, n to represent any
positive integer, r to represent any decimal number, Jval to

JSDoc := { (defs ,)? JSch }
defs := "definitions": { string : { JSch }

(, string : { JSch })⇤}
JSch := strSch | numSch | intSch | objSch |

arrSch | refSch | not | allOf | anyOf | enum
not := "not": { JSch }
allOf := "allOf": [{ JSch } (, { JSch })⇤]
anyOf := "anyOf": [{ JSch } (, { JSch })⇤]
enum := "enum": [Jval (, Jval)⇤]
refSch := "$ref": "# JPointer"

Table 2: Grammar for JSON Schema Documents

strSch := "type": "string" (, strRes)⇤

strRes := minLength | maxLength | pattern
minLength := "minLength": n

maxLength := "maxLength": n

pattern := "pattern": "regExp"

Table 3: Grammar for string schemas

represent any possible JSON document and regExp to rep-
resent any regular expression. Note that when these values
get instantiated they behave as terminals.
Remark . Since every JSON Schema document is also a
JSON document, we assume that duplicate keywords cannot
occur at the same nesting level.

Overall Structure. Table 2 defines the overall structure of
JSON Schema document (JSDoc). It consists of two parts:
an optional definitions section (defs), that is intended to
store other schema definitions to be reused later on, and a
mandatory schema section (JSch) where the actual schema
is specified. In turn, each schema can be either a string

schema (strSch), a number schema (numSch), an inte-

ger schema (intSch), an object schema (objSch), an array

schema (arrSch), a reference schema (refSch), a boolean
combination of schemas using not, allOf or anyOf, or sim-
ply the enumeration of a set of values (enum). Note how
reference schemas make use of JSON pointer (JPointer).

Strings. String schemas are formed according to Table 3.
We first state that we wish to represent a string using the
"type": "string" pair, and then we may add additional
restrictions to bound the length of the strings or to state
that they satisfy a certain regular expression regExp. We
illustrate some of these concepts by means of an example.

Example 2. The following schema S1 specifies strings

according to an email pattern. It has no definitions section.

{

"type": "string",

"pattern": "[A-z]*@ciws.cl"

}

The next schema, S2, includes schema S1 as a definition,

under the "email" key.

{

"definitions": {

"email": {

"type": "string",

"pattern": "[A-z]*@ciws.cl"

}

},

"not": {"$ref": "#/definitions/email"}

}

“phone”: {
“type”: “string”,
“minLength”: “8”,
“maxLength”: “11”,
“pattern”: “(+[1-9][1-9])?[0-9]*”
}

JSON Schema: Numbers

“edition”: {
“type”: “integer”,
“minimum”: 1
}

numSch := "type": "number" (, numRes)⇤

intSch := "type": "integer" (, numRes)⇤

numRes := min | exMin | max | exMax | mult

min := "minimum": r

exMin := "exclusiveMinimum": true

max := "maximum": r

exMax := "exclusiveMaximum": true

mult := "multipleOf": r (r � 0)

Table 4: Grammar for numeric schemas

objSch := "type": "object" (, objRes)⇤

objRes := prop | addPr | patPr | req
prop := "properties": { kSch (, kSch)⇤}
kSch := string : { JSch }
addPr := "additionalProperties": false

req := "required": [string (, string)⇤]
patPr := "patternProperties":

{ patSch (, patSch)⇤}
patSch := "regExp" : { JSch }

Table 5: Grammar for object schemas

Note that the evaluating the pointer /definitions/email

on S2 yields precisely S1. Intuitively, this schema is intended

to specify all objects that do not conform to S1.

Numeric Values. Integer and number schemas have the
same structure, shown in Table 4. The pair "type": "num-

ber" specifies any number, while "type": "integer" spec-
ifies integers only1. We can specify maximum and/or mini-
mum values for numbers and integers (these values are not
exclusive unless explicitly stated), and also that numbers
and integers should be multiples of another number.

Objects. We specify object schemas with the "type":

"object" pair, according to the grammar in Table 5. Within
objects schemas we may use additional restrictions to con-
trol the key-value pairs inside objects. The keyword re-

quired specifies that a certain string needs to be a key of
one of the pairs inside an object, and properties is used
to state that the value of a key needs itself to satisfy a cer-
tain schema. The keyword patternProperties works like
properties, except we bound all key-value pairs whose key
satisfies a regular expression, and finally additionalProp-

erties controls whether we allow any additional key-value
pair not defined in properties or patternProperties.

Example 3. Recall the schema from the Introduction de-

scribing an API call to the weather app. As the API is ex-

pecting a JSON containing a country name and a city name,

but nothing else, our schema specifies that these two keys

must be present and they have to be of type string. We also

use required and additionalProperties to specify that the

JSON we are sending to the app will contain precisely those

two keys and nothing else.

Arrays. Finally, array schemas are specified with the
"type": "array" pair, and according to Table 6. There are
two ways of specifying what kind of documents we find in ar-
rays. If a single schema follows the "items" keyword, then

1JSON Schema treats integers as a di↵erent type.

arrSch := "type": "array" (, arrRes)⇤

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})⇤]
minIt := "minItems": n

maxIt := "maxItems": n

unique := "uniqueItems": true

Table 6: Grammar for array schemas

every document in the array needs to satisfy this schema.
On the other hand, if an array follows the "items" key-
word, then it is one-by-one: the i-th document in the speci-
fied array needs to satisfy the i-th schema that comes af-
ter the "items" keyword. We can also set a minimum
and/or a maximum number of items, and finally we can use
uniqueItems to specify that all documents inside an array
need to be di↵erent.

Example 4. To illustrate how array schemas work, con-

sider again the API described in the Introduction. Imagine

now that our API also allows us to ask information about

the weather for several places simultaneously. An obvious

way to model such requests is by using JSON arrays, where

each item of the array is a single call as in Example 3. To

check that the requests we send are using the correct format

we could validate them against the following schema (The

reference is assumed to return the schema of Example 3):

{

"type": "array",

"items": {"$ref": "#/definitions/basic_call"}

}

2.3 Semantics
The idea is that a JSON document satisfies a schema if

it satisfies all the keywords of this schema. Formally, given
a schema S and a document J , we write J |= S to denote
that J satisfies S. We separately define |= for string, num-
ber, integer, object and array schemas, as well as for their
combinations or enumerations.

Combinations and References. Let S be a boolean com-
bination of schemas, an enumeration or a reference schema.
We say that J |= S, if one of the following holds.

• S is "enum":[J1, . . . , Jm] and J = J`, for some 1  `  m.

• S is "allOf":[S1, . . . , Sm] and J |= S`, for all 1  `  m.

• S is "anyOf":[S1, . . . , Sm] and J |= S`, for some 1  ` 
m.

• S is "not":S0 and J 6|= S
0.

• S is "$ref":"#p" for a JSON pointer p; Eval(p,D) is a
schema and J |= Eval(p,D), with D the JSON document
containing S.

Note that if Eval(p,D) returns null then "$ref":"#p"

is not satisfiable, and likewise if Eval(p,D) returns a JSON
value that is not a schema.

Strings. Let S be a string schema. Then J |= S if J is a
string, and for each key-value pair p in S that is not "type":
"string" one of the following holds:

• p is "minLength":n and J is a string with at least n char-
acters.

JSON Schema: Objects

“author”: {
“type”: “object”,
“properties”: {
“first”: {“type”: “string”},
“last”: {“type”: “string”},
},
“required”: [“lastName”]
}

numSch := "type": "number" (, numRes)⇤

intSch := "type": "integer" (, numRes)⇤

numRes := min | exMin | max | exMax | mult

min := "minimum": r

exMin := "exclusiveMinimum": true

max := "maximum": r

exMax := "exclusiveMaximum": true

mult := "multipleOf": r (r � 0)

Table 4: Grammar for numeric schemas

objSch := "type": "object" (, objRes)⇤

objRes := prop | addPr | patPr | req
prop := "properties": { kSch (, kSch)⇤}
kSch := string : { JSch }
addPr := "additionalProperties": false

req := "required": [string (, string)⇤]
patPr := "patternProperties":

{ patSch (, patSch)⇤}
patSch := "regExp" : { JSch }

Table 5: Grammar for object schemas

Note that the evaluating the pointer /definitions/email

on S2 yields precisely S1. Intuitively, this schema is intended

to specify all objects that do not conform to S1.

Numeric Values. Integer and number schemas have the
same structure, shown in Table 4. The pair "type": "num-

ber" specifies any number, while "type": "integer" spec-
ifies integers only1. We can specify maximum and/or mini-
mum values for numbers and integers (these values are not
exclusive unless explicitly stated), and also that numbers
and integers should be multiples of another number.

Objects. We specify object schemas with the "type":

"object" pair, according to the grammar in Table 5. Within
objects schemas we may use additional restrictions to con-
trol the key-value pairs inside objects. The keyword re-

quired specifies that a certain string needs to be a key of
one of the pairs inside an object, and properties is used
to state that the value of a key needs itself to satisfy a cer-
tain schema. The keyword patternProperties works like
properties, except we bound all key-value pairs whose key
satisfies a regular expression, and finally additionalProp-

erties controls whether we allow any additional key-value
pair not defined in properties or patternProperties.

Example 3. Recall the schema from the Introduction de-

scribing an API call to the weather app. As the API is ex-

pecting a JSON containing a country name and a city name,

but nothing else, our schema specifies that these two keys

must be present and they have to be of type string. We also

use required and additionalProperties to specify that the

JSON we are sending to the app will contain precisely those

two keys and nothing else.

Arrays. Finally, array schemas are specified with the
"type": "array" pair, and according to Table 6. There are
two ways of specifying what kind of documents we find in ar-
rays. If a single schema follows the "items" keyword, then

1JSON Schema treats integers as a di↵erent type.

arrSch := "type": "array" (, arrRes)⇤

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})⇤]
minIt := "minItems": n

maxIt := "maxItems": n

unique := "uniqueItems": true

Table 6: Grammar for array schemas

every document in the array needs to satisfy this schema.
On the other hand, if an array follows the "items" key-
word, then it is one-by-one: the i-th document in the speci-
fied array needs to satisfy the i-th schema that comes af-
ter the "items" keyword. We can also set a minimum
and/or a maximum number of items, and finally we can use
uniqueItems to specify that all documents inside an array
need to be di↵erent.

Example 4. To illustrate how array schemas work, con-

sider again the API described in the Introduction. Imagine

now that our API also allows us to ask information about

the weather for several places simultaneously. An obvious

way to model such requests is by using JSON arrays, where

each item of the array is a single call as in Example 3. To

check that the requests we send are using the correct format

we could validate them against the following schema (The

reference is assumed to return the schema of Example 3):

{

"type": "array",

"items": {"$ref": "#/definitions/basic_call"}

}

2.3 Semantics
The idea is that a JSON document satisfies a schema if

it satisfies all the keywords of this schema. Formally, given
a schema S and a document J , we write J |= S to denote
that J satisfies S. We separately define |= for string, num-
ber, integer, object and array schemas, as well as for their
combinations or enumerations.

Combinations and References. Let S be a boolean com-
bination of schemas, an enumeration or a reference schema.
We say that J |= S, if one of the following holds.

• S is "enum":[J1, . . . , Jm] and J = J`, for some 1  `  m.

• S is "allOf":[S1, . . . , Sm] and J |= S`, for all 1  `  m.

• S is "anyOf":[S1, . . . , Sm] and J |= S`, for some 1  ` 
m.

• S is "not":S0 and J 6|= S
0.

• S is "$ref":"#p" for a JSON pointer p; Eval(p,D) is a
schema and J |= Eval(p,D), with D the JSON document
containing S.

Note that if Eval(p,D) returns null then "$ref":"#p"

is not satisfiable, and likewise if Eval(p,D) returns a JSON
value that is not a schema.

Strings. Let S be a string schema. Then J |= S if J is a
string, and for each key-value pair p in S that is not "type":
"string" one of the following holds:

• p is "minLength":n and J is a string with at least n char-
acters.

JSON Schema: Arrays

“address”: {
“type”: “array”,
“items”: [
{“type”: “integer”},
{“type”: “string”}
],
“additionalItems”: false
}

numSch := "type": "number" (, numRes)⇤

intSch := "type": "integer" (, numRes)⇤

numRes := min | exMin | max | exMax | mult

min := "minimum": r

exMin := "exclusiveMinimum": true

max := "maximum": r

exMax := "exclusiveMaximum": true

mult := "multipleOf": r (r � 0)

Table 4: Grammar for numeric schemas

objSch := "type": "object" (, objRes)⇤

objRes := prop | addPr | patPr | req
prop := "properties": { kSch (, kSch)⇤}
kSch := string : { JSch }
addPr := "additionalProperties": false

req := "required": [string (, string)⇤]
patPr := "patternProperties":

{ patSch (, patSch)⇤}
patSch := "regExp" : { JSch }

Table 5: Grammar for object schemas

Note that the evaluating the pointer /definitions/email

on S2 yields precisely S1. Intuitively, this schema is intended

to specify all objects that do not conform to S1.

Numeric Values. Integer and number schemas have the
same structure, shown in Table 4. The pair "type": "num-

ber" specifies any number, while "type": "integer" spec-
ifies integers only1. We can specify maximum and/or mini-
mum values for numbers and integers (these values are not
exclusive unless explicitly stated), and also that numbers
and integers should be multiples of another number.

Objects. We specify object schemas with the "type":

"object" pair, according to the grammar in Table 5. Within
objects schemas we may use additional restrictions to con-
trol the key-value pairs inside objects. The keyword re-

quired specifies that a certain string needs to be a key of
one of the pairs inside an object, and properties is used
to state that the value of a key needs itself to satisfy a cer-
tain schema. The keyword patternProperties works like
properties, except we bound all key-value pairs whose key
satisfies a regular expression, and finally additionalProp-

erties controls whether we allow any additional key-value
pair not defined in properties or patternProperties.

Example 3. Recall the schema from the Introduction de-

scribing an API call to the weather app. As the API is ex-

pecting a JSON containing a country name and a city name,

but nothing else, our schema specifies that these two keys

must be present and they have to be of type string. We also

use required and additionalProperties to specify that the

JSON we are sending to the app will contain precisely those

two keys and nothing else.

Arrays. Finally, array schemas are specified with the
"type": "array" pair, and according to Table 6. There are
two ways of specifying what kind of documents we find in ar-
rays. If a single schema follows the "items" keyword, then

1JSON Schema treats integers as a di↵erent type.

arrSch := "type": "array" (, arrRes)⇤

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})⇤]
minIt := "minItems": n

maxIt := "maxItems": n

unique := "uniqueItems": true

Table 6: Grammar for array schemas

every document in the array needs to satisfy this schema.
On the other hand, if an array follows the "items" key-
word, then it is one-by-one: the i-th document in the speci-
fied array needs to satisfy the i-th schema that comes af-
ter the "items" keyword. We can also set a minimum
and/or a maximum number of items, and finally we can use
uniqueItems to specify that all documents inside an array
need to be di↵erent.

Example 4. To illustrate how array schemas work, con-

sider again the API described in the Introduction. Imagine

now that our API also allows us to ask information about

the weather for several places simultaneously. An obvious

way to model such requests is by using JSON arrays, where

each item of the array is a single call as in Example 3. To

check that the requests we send are using the correct format

we could validate them against the following schema (The

reference is assumed to return the schema of Example 3):

{

"type": "array",

"items": {"$ref": "#/definitions/basic_call"}

}

2.3 Semantics
The idea is that a JSON document satisfies a schema if

it satisfies all the keywords of this schema. Formally, given
a schema S and a document J , we write J |= S to denote
that J satisfies S. We separately define |= for string, num-
ber, integer, object and array schemas, as well as for their
combinations or enumerations.

Combinations and References. Let S be a boolean com-
bination of schemas, an enumeration or a reference schema.
We say that J |= S, if one of the following holds.

• S is "enum":[J1, . . . , Jm] and J = J`, for some 1  `  m.

• S is "allOf":[S1, . . . , Sm] and J |= S`, for all 1  `  m.

• S is "anyOf":[S1, . . . , Sm] and J |= S`, for some 1  ` 
m.

• S is "not":S0 and J 6|= S
0.

• S is "$ref":"#p" for a JSON pointer p; Eval(p,D) is a
schema and J |= Eval(p,D), with D the JSON document
containing S.

Note that if Eval(p,D) returns null then "$ref":"#p"

is not satisfiable, and likewise if Eval(p,D) returns a JSON
value that is not a schema.

Strings. Let S be a string schema. Then J |= S if J is a
string, and for each key-value pair p in S that is not "type":
"string" one of the following holds:

• p is "minLength":n and J is a string with at least n char-
acters.

266

JSON Schema: Pointers
• JSON schema allows for pointers to a value in the

JSON

• the general form is p=w1/w2/…/wn, and is evaluated
similarly as in XPath
[{“name”: “Ullman”}, {“name”: “Knuth”}]

p = 1/name

Eval(p) = “Knuth”

JSON Schema: Definitions
• JSON Schema can have a definitions part

which can be referenced using pointers (similar to
types in XML Schema)

{
 "definitions": {
 "S": {
 "anyOf": [
 {"enum": [null]},
 {"allOf": [
 {"type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 {"$ref": "#/definitions/S"},
 {"$ref": "#/definitions/S"}]
 },
 {"not": {"type": "array", "uniqueItems": true}}
]}
]},
 "$ref": "#/definitions/S"
 }

JSON Schema: Definitions
• Can lead to schemas which are ill-designed

• the above allows to define a document that is both itself and not itself

• way to fix: a graph of the definitions where a node is connected to
another if it is involved in its definition

• schema ok if graph is acyclic (not implemented in the draft specs!)

{
 "definitions": {
 "S": {"not": {"$ref": "#/definitions/S"}}
 },
 "$ref": "#/definitions/S"
}

JSON Schema: Evaluation
• JSON Schema can be evaluated in polynomial time

with a complexity of O(SD)

general algorithm

1. process document restriction by restriction

2. at the same time, check that the corresponding
subschema validates the document

JSON Schema: Conclusion
• popular schema variant for JSON, actively developed and used

• issues with consistency in the schema which have to be
addressed

• missing the theoretical underpinnings as in schemas for XML
(tree automata and grammars)

• can be evaluated in polynomial time

• however, not all available validators validate the same schemas!

Further Reading

1. Understanding JSON Schema https://json-
schema.org/understanding-json-schema/

2. F. Pezoa, J.L. Reutter, F. Suarez, M. Ugarte, D.
Vrgoc. Foundations of JSON Schema. WWW 2016
https://martinugarte.com/media/pdfs/p263.pdf

https://json-schema.org/understanding-json-schema/
https://json-schema.org/understanding-json-schema/
https://json-schema.org/understanding-json-schema/
https://martinugarte.com/media/pdfs/p263.pdf

