Web Data Models

Typing: DTD, Schema
Silviu Maniu - Nicole Bidoit-Tollu

UNIVERSITE

PARIS
SUD

(]
universite

XML Type Definition
[anguage

XML type definition language: a way to specify a
certain subset of XML document — a type

typing XML document : what for ? (next slide)

* specification should be simple: a validator should
be built automatically and run efficiently

XML Typing : What for?

a way to specifty a certain subset of XML document
writing programs, queries

iInput program validity

program correctness

program (query) optimization

storage optimization

iIntegration

DTD: Syntax

« <!ELEMENT elem_name elem_regexp>— an
element named e lem _name contains elements

described by the regular expression
elem_regexp

* <!ATTLIST elem_name att_name att_type att _values>
— the element elem name has an attribute named
att_name of type att_type and having possible
values described by att_values

DTD: Syntax

* regular expressions are formed of *,+,7, sequence
[, 1, EMPTY, ANY, #PCDATA (text)

o attribute types are ID (primary key), IDREF (foreign
key), CDATA (text), v1|v2],..,vn (fixed value list)

e attribute values are v (default value), #REQUIRED
(mandatory attribute), #IMPLIED (optional
attribute), #FIXED v (constant value v)

DID

Mixed Content

* Mixed content described by a repeatable OR
group (between |):

(#PCDATA | element-name | ..)

 #PCDATA must be first followed by O or more
elements — can be repeated multiple times

DI1D: Regular Expressions

* most interesting part of DTD — matching regular
expressions on the contents

<!ELEMENT person

(name, title?, addressx, (fax|tel)s,
emailx) >

DI1D: Regular Expressions

* The sequence of children labels has to match its
regular expression content model:

<IDOCTYPE a [
<I!ELEMENT a (b, c*, a?)>
<!ELEMENT b (#PCDATA) >
<!ELEMENT c¢ (d, d+) >
<!ELEMENT d (#PCDATA) >

C a
_______________ - oo
| TN
Text d d d/d\d b
| | | |

Text Text Text Text Text Text

Questions to Answer

1. What is a regular expression”? How can we match a
string against it?

2. What is a finite-state automaton?
3. What is a deterministic regular expression”

4. What is an T-unambiguous regular expression

Regular Expressions

meaning

tag/element a occurs
expression el is followed by expression e2
O or more occurrences of e
optional — O or 1 occurrences of e
1 or more occurrences of e

el or e?

grouping

Regular Expressions

very useful for defining programming language
syntax

in various Unix tools (grep), text editors (vim,
emacs, ...)

classical concept in CS (starting from Kleene, 50s)

Implementing RES

* input: RE e, string s; output: does s match e?

e construct a non-deterministic or deterministic
finite-state automaton (FA) &= (abjpyaa

s = abbaaba

Implementing RES

* input: RE e, string s; output: does s match e?

e construct a non-deterministic or deterministic
automaton

e = (ab|b)*a*a

s = abbaaba

Implementing RES

* evaluation on a deterministic FA can be done In
inear time (in the size of the string | S|) and In
constant space (size of the FA = number of states)
- how?

Implementing RES

* a non-deterministic FA can be transformed to a
deterministic FA — but in exponential space;
meaning that evaluation is not efficient

e for a deterministic FA one can build a minimal

unigue equivalent FA — equivalence between FAs
IS easy to check

D1Ds and RES

W3C requires that the RE specitied in DTD must be
deterministic:

* evaluation is efficient if element-type definitions are
deterministic

* resulting automaton = Glushkov automaton

states = positions of symbols in the regular
expression (semantic actions);

transitions = based on the “follows set”

D1Ds and RES

XML specification: regular expressions are deterministic
(1-unambiguous)

unambiguous = each word (string) is witnessed by at most

one sequence of positions of symbols in the expression

that matches the word [Brugemann-Klein, Wood 1998
ambiguous: (a|b)*aa*

equivalent unambiguous: (a|b)*a

D1Ds and RES

* |s it enough for expressions to be only
unambpiguous?

* No = an expression can be unambiguous but the
matching decision has to be done by looking at
more states in advance

(alb)*a

* without looking beyond the current symbol = 1-
unambiguous

Glushkov Automaton

Can we recognize deterministic REs? [Brigemann-
Klein, Wood 1998]

+ areqgular expression is deterministic iff its Glushkov
automaton is deterministic

- the Glushkov automaton can be computed in time
guadratic in the size of the regular expression

Glushkov Automaton

e character iIn RE = state in an automaton + one state
of the beginning of the RE

* transitions show which characters can precede
each other; incoming labels can only be the labels
of the state

» construction is quadratic time O(m?)

Glushkov Automaton

e \What is the Glushkov automaton for:

a(blc)(b|d)*

DTD: Validation Using FA

General algorithm for DTD (top-down):

1. for each <!ELEMENT... create its deterministic
automaton A

2. for each element in document D, match the
children using its corresponding automaton

3. If one does not match = document invalid

4. if all match = document valid

DTD: Validation Using FA

Why does this work?

e |abel-guarded subtree exchange property = trees obtained
by exchanging the subtrees rooted at vl and v2 are in the
same languages if v1 and v2 have the same label lab

t1 t2

v1 V2

D D Validation: Example

<a>
<a>
<a />

<e />
<f />
<g /> <!'ELEMENT

/> <! ELEMEN

<e /> <!ELEMENT
So <!ELEMENT

<e />

<d /> <!ELEMENT
</C> <!ELEMENT

SN <!ELEMENT
<q />

<e />
<f />

(a,(b|c)x)>
(e, f?, g?)>
(e+, d)>
EMPTY>
EMPTY>
EMPTY>
EMPTY>

QO - QAN O

D 1D: Limits

» DID is compact, easy to understand, easy to validate
(with the W3C restrictions...)

e But:

1. itis not in XML (dealing with another language)

2. no distinguishable types (everything is characters)
3. no value constraints (cardinality of sequences)

4. no built-in scoping (elements only used in subtrees)

XML Schema

XML Schema

W3C Standard — schema description language that
goes beyond the capabillities of the DTD

XML Schema specifications are XML documents
themselves

XML Schema has built-in data types (based on Java
and SQL types)

control over the values a data type can assume

users can define their own data types

XML Schema Constructs

» declaring an element (by default, can only contain string values)
<xsd:element name=“author" />

* bounded occurrences (absence of minOccurs / maxOccurs implies
once)

<xsd:element name=“address'" minOccurs=“1"
max0ccurs=“unbounded” />

e types (considered atomic with respect to the schema)
<xsd:element name=“year" type=“xsd:date” />

other types: string, boolean, number, float, duration, time, base64binary,
AnyURI, ...

XML Schema Constructs

* non atomic complex types are built from simple types using type
constructors

<xsd:complexType name=“Persons'>
<xsd:sequence>

<xsd:element name=“person' minOccurs=“0"
max0ccurs=“unbounded” />

</xsd:sequence>
</xsd:complexType>

<xsd:element name=“persons" type=“Persons" />

XML Schema Constructs

* new complex types can be derived from an existing type
(see specification)

e attributes are declared within the element
<xsd:element name=“book”>
<xsd:attribute name=“title" />

<xsd:attribute name=“year" type=“xsd:gYear"”/
>

</xsd:element>

XML Schema Example

e \WWhat is the schema of this XML?

<?xml version="1.0" encoding="UJF-8"7>

<books>

<book id="1" title="Theory of Computation'>

<authors>
<author>Michael Sipser</author>

</author>
<publisher>Cengage Learning</publisher>
<year>2012</year>
<edition>3</edition>

</book>

<book 1id="2" title="Artificial Intelligence'>
<authors>

<author>Peter Norvig</author>
<author>Stuart Russell</author>
</authors>
<publisher>Pearson</publisher>
<year>2013</year>
<edition>3</edition>
</book>
</books>

Validating XML In General

 RE /FA on strings (words) are very good and very
efficient for DTDs (and, as we will see, for XPath)

* What about XML schema?” ... how do XML schema
compare to DTD? other schema languages”

* |s there a formalism like RE / FA that can express /
implement XML typing in general?

Validating XML In General

* |sthere a formalism like RE / structure like FA that
can express / validate XML typing in general?

* [ree grammars

e [ree automata

Next

Schemas and Tree
Grammars : an example

* Schemas for XML documents can be formally
expressed by Regular Tree Grammars (RTG)

Book Example revisited:

TBooks —> Books [NTBook*]

TBook —> Book [NTPub, NTEd, NTAuths]
TPub —> Publisher [PCData]

TEd —> Editor [PCData]

TAuths —> Authors [NTAuth +]

TAuth —> Author [NTFirst , NTLast |
TFirst —> First [PCData]

TLast —> Last [PCData]

L L L L L L ZL Z

NTxxx : non terminal symbols of the grammar
| regular expression | : content model written based on non terminal

Schemas and Tree
GGrammars

* Schemas for XML documents can be formally
expressed by Regular Tree Grammars (RTG)

Regular Tree Grammar (RTGQG)

A regular tree grammar (RTG) is a 4-tuple G = (N, T, S, P), where :
@ N is a finite set of non-terminal symbols ;
@ T is a finite set of terminal symbols
@ Sis a set of start symbols, where S C N and

@ P is a finite set of production rules of the form X — a[R], where
X e N,aec T,and R s a regular expression over N.

(We say that, for a production rule, X is the left-hand side, a R is the
right-hand side, and R is the content model.)

Tree Grammar : an other
example

P,

Dir — directory|Person™]

Person — student|DirA | DirB])

Person — professor|DirB]

DirA — direction|[Name.Number?.Add?]
DirB — direction|[Name.Add?.Phone™]

* Provide one or two XML documents conforming to
the grammar, and

e LetstrytowriteitasaDID! ...

Validity wrt Tree Grammar

e Given aR

Infor
;-

mal idea

ord |= G:

ake the t

2.

ry to assl

'ee representation o

gned a non termina

G G what are the valid documents ?

- d

symbol NT7Xto each

node n “following” the rules of the grammar G (this

assignment is an interpretation)

success —> d is valid wrt GG

Schemas and Tree
GGrammars

e Schemas for XML documents can be formally expressed
by RTG ...

e Expressivity ?
1. RTG versus DTD ... local tree grammars

2. RTG versus XML schemas
single-type tree grammars

3.comparing DTD, XML schemas and others

e Easy validation ?

Competing Non-Terminals

Two different non-terminals A and B of the RTG G are
sald to be competing with each other it:

* a production rule has A in the left-nand side,

* another production rule has B in the left-hand side,
and

* these two production rules share the same terminal
symbol in the right-hand side.

Grammar Example

P 1 A1
Dir — directory[Person”] directory[Qperson] — Qir
Person — student|[DirA | DirB]) student|[Quira | Qi8] — Qperson
Person — professor|DirB] professor|Quirs] — Qperson
DirA — direction[Name.Number?.Add?] | direction|Qname-Qnumper?-Qadd?] — Qaira
DirB — direction|[Name.Add?.Phone™] direction|Qname.Qada?-Qphone] — QairB

| ocal Tree Grammar

* A local tree grammar (LTG) is a regular tree grammar
that does not have competing non-terminals

l.e. one and only one rule for each non terminal symbol

..e. the relationship between non terminal symbols and
terminal symbols is one-one.

* Local tree grammars match DTDs ... more or less ...
+ check that the REs of content models are
1-unambigous

Grammar Example

Ps

As

Dir — directory|Student” . Professor™]
Student — student[Name.Number?.Add?]
Professor — professor[Name.Add?.Phone™]

director)4 [q;tud°q;rof] — {dir
student[Qname.Qnumber?-Qadd?] — Qstud
prOfessor[Qname-qadd?-q;hone] — qpl‘Of

Single-Type Tree Grammar

A single type tree grammar (STTG) Is a regular tree
grammar, where:

e for each production rule, non terminals in the RE (content
model) do not compete with each other, and

e start symbols do not compete with each other.

 competing symbols allowed but in a way that makes it
easy to distinguish from the context (parent node)

A single-type tree language (STTL) is a language that can be
generated by at least one STTG.

Grammar Example

P2 AZ
Dir — directory[Person”| directory|Qperson] — Quir
Person — student|DirA]) student|[Qairal — Qperson
Person — professor|DirB] professor|qairs] — Qperson
DirA — direction|[Name.Number?.Add?] | direction|Qname-Qnumber?-Qadd?] — Qaira
DirB — direction[Name.Add?.Phone™] direction|Qname.Qadda?-Qphone] — QairB

XML Schema Languages

Grammar Schema Language

LTG DTD

STTG XML Schema

RTG RelaxNG

Classes of Regular
. anguages

LTL € STTL C RTL

local single regular
Some good news

 LTL (local) and STTL (single type) are closed under
iIntersection but not union;

e RTL closed under union, intersection and difference

Tree Automata for XML
Validation

Validating XML In General

* FA on strings (words) are very good and very
efficient for DTDs (and, as we will see, for XPath)

* But what about XML schema®? ... how do XML
schema compare to DTD? other schema
language”

* |s there a formalism like (RE) / structure
(automaton) that can express / validate XML in
general?

Tree Automata

Two types:

1. on ranked trees: each node has a bounded
number of children; each XML can be transtormed
by using the first child - next sibling encoding
(more later)

2. on unranked trees: no bound on the number of
children; better suited (directly) to XML,

Binary Iree Automata

Bottom-up non-deterministic tree automata

A non-deterministic bottom-up tree automata is a 4-tuple
A= (X, Q, F,A)where
@ X is an alphabet. We usually distinguish between two disjoint
alphabets : a leaf alphabet (X .5f) and an internal one (X nternar)-

@ Q) is a set of states.
@ F is a set of accepting states F C Q.

@ A is a set of transition rules having one of the forms :
| - gwhen | € X4

a(ch 9 q2) — g when a ¢ Zint‘erna/

Binary Iree Automata;
Semantics

e the semantics of automata A are described In
terms of a run

* arun = a mapping from the domain of Q (states)
such that for each p we have r(p) in Q

* arunis accepting iIf the state of the root is one of
the final states

Automata Example

Let A = ({av l}7 {qu di }7 {qO}v A) where

a(gi,q1) — Qo
A=< alq, %) — 9
/ — g

é@\@\@
Sod D

Iree Languages

 The language L(A) is the set of trees accepted by
A

A language accepted by a bottom-up tree
automaton is called a regular tree language

lop-Down Iree Automata

Binary top-down tree automata

A non-deterministic top-down tree automata is a 5-tuple
A=(X,Q, I F,A) where

@ X is an alphabet.

@ Q) is a set of states.

@ /| C Qs a set of initial states.

@ F is a set of accepting states F C Q.

@ A is a set of transition rules having the form :

g — a(g, gz)-
whereac X and qg,qy,q> € Q

Top-Down lree Automata:
Semantics

Run

@ A run of top-down automaton A = (X, Q,/, F, A) on a binary tree t
is a mapping r : dom(t) — Q such that

@ r(e) el;
@ for each node p with label a, rule r(p) — a(r(p.0), r(p.1)) is in A.

@ A run is accepting if for all leaves p we have r(p) € F.

Deterministic binary top-down automata

We say that a binary tree automaton is (top-down) deterministic if | is
a singleton and for each a € > and g € Q there is at most one

transition rule of the form g — a(g+, @»).

Automata Example
Let A= ({a,/},{9,a1},{%}, {91}, A) where

A:{ qo — a(gi,q1)
g1 — a(do, Qo)

©
olRe
@%\@

Regular [ree Languages

The following statements are equivalent:
| is aregulartree language

e | is accepted by a non-deterministic bottom-up tree
automaton

e | is accepted by a deterministic bottom-up automaton

* | is accepted by a non-deterministic top-down
automaiton

Regular [ree Languages

Generally, the same results as for regular word/string
languages (FA):

* given a tree automaton, one can find an equivalent
bottom-up automaton that is deterministic (with
exponential blowup)

* regular tree languages are closed under
complement, intersection and union

Ranked lree Automata

 We can represent any unranked tree (XML) by a
binary tree where the left child is the first child and
the right child is the next sibling

called first-child next-sibling encoding (not the only
one)

XML — Ranked lree

person person

-

data data

(o) —»
\ data

lastName

ender £ data
s
data data data

data data

data

Relation Between Ranked
and Unranked Tree Automata

* For each unranked tree automaton, there exists a
ranked tree automaton accepting the encoding of
the XML in first child — next sibling

* For each ranked tree automaton, there exists an
unranked tree automaton accepting the unranked
tree seconded from first child — next sibling
encoding

Unranked Bottom-Up Iree
Automata

Non-deterministic bottom-up tree automata

A non-deterministic bottom-up tree automaton is a 4-tuple
A= (X, Q,F,A)where X is an alphabet, Q is a set of states, F C Q is
a set of final states an A is a set of transition rules of the form

alE] — q

where a € X, E is a regular expression over Qand g € Q

Unranked Bottom-Up Iree
Automata: Semantics

Let A = (%, Q, F, A) be an unranked tree automata.

@ The semantics of A4 is described in terms of runs

@ Given an unranked tree t, a run of A on tis a mapping from
dom(t) to Q where, for each position p whose children are at
positions p0, ..., p(n— 1) (with n > 0), we have r(p) = q if all the
following conditions hold :

@ f(p)=ack,
@ the mapping r is already defined for the children of p, i.e.,

r(p.0)=qo, ..., r(p.(n—1)) =qg,_1 and
@ the word qu.q1...gn_1isin L(E).

® A run ris successful if r(e) is a final state.

Automata Example

Let A = ({37 /}7 {qéh de, ql}? {qa}7 A) where

a[qz-q7 (e [€)] — Qa
A=< clq] — dc
[€] — q; Special rule for leaves

o
OO

S e

General Validation Algorithm

A run associates to each position p in the XML document
a set of states in Q such that:

1. there exists a transition rule to a state in Q from a
label a

2. the labelatpis a

3. the string of the children labels matches the RE in the
transition rule

A run is successful if it contains at least one final state.

Simplitied Versions for
L TG and STTG

 LTG: the sets of states are always singletons, only
one rule for each label

 STT@G: the results of a run can consider just a single
type for each node of the tree

Validation Example

€
Shop

d//////// ~\\\\\\\1

Customer Invoice
. . Ol 02 _ 10
1dCust 1idInvoices Name ivoiceNb
000 010 020 100
Jdata ddata Jdata Qdata

Shop, (®7 (Z))’ qz’ustomerq?nvoz’ce — QShop

C'ustomer,

({QidC’ust}a {Qidlnvoices})n dName
— qCustomer

Invoice, ({Qinvoicer}a @), 0 — dInvoice

idC’U,St, (®7 (b)a ddata — 4idCust
idlnvoices, ((Z)a (Z))a ddata — 4idInvoices

Name, (Qa ®)7 Qdata = QName
in'UO'I;CQNba ((Z)a (Z))a ddata — Y9invoiceNb

Slide Credits

* Validation Using Trees: structure & examples from
Mirian Haytield Ferrari

* Figures & examples in slides 8, 12, 13, 24 (oups
numbers have changed !!!) from C. Maneth’s
course

