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XPath: Performance

• XPath is a navigational language — specifies how 
the XML documents should be traversed 

• Main issue: big volume of nodes can be extracted 
via XPath, so efficient processing is still an ongoing 
challenge
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Figure 2: Exponential-time query complexity of XT
and XALAN (Experiment 1).

bend in the curves is due to the near-constant runtime
overhead of the Java VM and of parsing the XML doc-
ument.

Discussion

This behavior can be explained with the follow-
ing pseudocode fragment, which seems to appropri-
ately describe the basic query evaluation strategy of
XALAN and XT.

procedure process-location-step(n0, Q)
/* n0 is the context node;

query Q is a list of location steps */
begin

node set S := apply Q.first to node n0;
if (Q.tail is not empty) then

for each node n ∈ S do
process-location-step(n, Q.tail);

end

It is clear that each application of a location step to a
context node may result in a set of nodes of size linear
in the size of the document (e.g., each node may have a
linear number of descendants or nodes appearing after
it in the document). If we now proceed by recursively
applying the location steps of an XPath query to in-
dividual nodes as shown in the pseudocode procedure
above, we end up consuming time exponential in the
size of the query in the worst case, even for very simple
path queries. As a (simplified) recurrence, we have

Time(|Q|) :=
{

|D| ∗ Time(|Q|− 1) . . . |Q| > 0
1 . . . |Q| = 0

where |Q| is the length of the query and |D| is the size
of the document, or Time(|Q|) = |D||Q|.

The class of queries used puts an emphasis on
simplicity and reproducibility (using the very simple
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Figure 3: Exponential-time query complexity of IE6,
for document sizes 2, 3, 10, and 200 (Experiment 2).

document ⟨a⟩⟨b/⟩⟨b/⟩⟨/a⟩). Interestingly, each ‘par-
ent::a/b’ sequence quite exactly doubles the times both
systems take to evaluate a query, as we first jump
(back) to the tree root labeled “a” and then experi-
ence the “branching factor” of two due the two child
nodes labeled “b”.

Our class of queries may seem contrived; however,
it is clear that we make a practical point. First, more
realistic document sizes allow for very short queries
only2. At the same time, XPath query engines need to
be able to deal with increasingly sophisticated queries,
along the current trend to delegate larger and larger
parts of data management problems to query engines,
where they can profit from their efficiency and can
be made subject to optimization. The intuition that
XPath can be used to match a large class of tree pat-
terns [13, 10, 3] in XML documents also implies to a
certain degree that queries may be extensive.

Moreover, similar queries using antagonist axes
such as “following” and “preceding” instead of “child”
and “parent” do have practical applications, such as
when we want to put restrictions on the relative po-
sitions of nodes in a document. Finally, if we make
the realistic assumption that the documents are al-
ways much larger than the queries (|Q| << |D|),
it is not even necessary to jump back and forth
with antagonist axes. We can use queries such as
//following::*/following::*/. . ./following::* to observe
exponential behavior.

Experiment 2: Exponential-time Query Com-
plexity of Internet Explorer 6

In our second experiment, we executed queries that
nest two important features of XPath, namely paths

2We will show this in the second experiment for IE6 (see
Figure 3), and have verified it for XALAN and XT as well.

Gottlob, Koch, Pichler “Efficient Algorithms for Processing XPath Queries”, VLDB 2002
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XALAN and XT.
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it is clear that we make a practical point. First, more
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only2. At the same time, XPath query engines need to
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the realistic assumption that the documents are al-
ways much larger than the queries (|Q| << |D|),
it is not even necessary to jump back and forth
with antagonist axes. We can use queries such as
//following::*/following::*/. . ./following::* to observe
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In our second experiment, we executed queries that
nest two important features of XPath, namely paths
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Lecture Outline

• evaluating simple paths 

• evaluating Core XPath 

• evaluating Full XPath



XPath: Simple Paths
• Simple paths are of the form: 

//tag_1/tag_2/…/tag_n 

//tag_1/tag_2/…/tag_n-1/text() 

• Can be evaluated in a single pre-order traversal (by 
using a stack)



XPath: Simple Paths

aa

c

a

db

b

Q: //a/b



XPath: Simple Paths
Q: //a/b

aa

c

a

db

b

p = 1



XPath: Simple Paths
Q: //a/b

aa

c

a

db

b

Stack

p = p+1 = 2
Seq
<a>



XPath: Simple Paths
Q: //a/b

p = 2
StackSeq

<a>
<b>

Match!

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 1
Stack

2

Seq
<a>
<b>

Match!

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 1
Stack

2

Seq
<a>
<b>
<a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = p+1 = 2
Stack

1
2

Seq
<a>
<b>
<a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 2
Stack

1
2

Seq
<a>
<b>
<a>
</a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = pop() = 1
Stack

2

Seq
<a>
<b>
<a>
</a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 1
Stack

2

Seq
<a>
<b>
<a>
</a>
<a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = p+1 = 2
Stack

1
2

Seq
<a>
<b>
<a>
</a>
<a>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 2
Stack

1
2

Seq
<a>
<b>
<a>
</a>
<a>
<c>

aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = pop() = 1
Stack

2

Seq
<a>
<b>
<a>
</a>
<a>
<c>
</c>aa

c

a

db

b



XPath: Simple Paths
Q: //a/b

p = 2
Stack

2

Seq
<a>
<b>
<a>
</a>
<a>
<c>
</c>
<b>

aa

c

a

db

b
Match!



XPath: Simple Paths
Q: //a/b

p = 1
Stack

2

Seq
<a>
<b>
<a>
</a>
<a>
<c>
</c>
<b>

aa

c

a

db

b
Match!



XPath: Simple Path 
Evaluation Complexity

• The algorithm is linear in the size of the document 
O(|D|) 

• Moreover, it can be implemented as a streaming 
algorithm 

• Simple path evaluation can be implemented on top 
of SAX (Simple API for XML)



XPath: Simple Path 
Evaluation In SAX

Algorithm (sketch): 

1. Initialization: represent path query as an array for each step, maintain an 
array index i of the current step in the path, maintain a stack S of index 
positions 

2. startDocument: empty stack S; i=1 

3. startElement: if path[i] and element match, proceed to next step; 
otherwise, make a failure transition. Push i on S. 

4. endElement: Pop old i from S. 

5. text: If path[i]=text, we found a match. Otherwise, do nothing.



Failure Transitions
Example:  

Q: //a/b/a/c/ but we have seen //a/b/a/b 

• postfix of we have seen is prefix of the query! 

  Q: //a/b/a/c/               //a/b/a/b 

• this can be done via the Knuth-Morris-Pratt 
algorithm — linear string matching



Evaluation Using Automata

Principle: Use the XPath expression as a regular 
expression matching the paths of the tree.



Evaluation Using Automata

1 432
a b c

* *

//a/b//c



Evaluation Using Automata

• dealing with * transitions is quite tricky 

• transforming the NFA into a DFA has exponential 
blow-up 

• good news: do not need to transform into DFA (lazy 
DFA)



Evaluation Using Automata

• dealing with * transitions is quite tricky 

• transforming the NFA into a DFA has exponential 
blow-up 

• good news: do not need to transform into DFA (lazy 
DFA)

Green, Gupta, Miklau, Onizuka, Suciu. “Processing XML 
Streams with Deterministic Automata and Stream Indexes”, 
ACM TODS 29(4), 2004



XPath: Core XPath

Core XPath contains: 

• all 12 axes 

• all node tests (only element nodes) 

• filters with logical operators: and, or, not



Operation Objective

the node ids corresponding to 
the axis axis

intersection of sets; for steps and 
and

union of sets; for or

difference of sets; for not

set of node ids labelled label

XPath: Bottom-up 
Evaluation of Core XPath

Set operations on nodes:

axis(S1) = S2

\(S1, S2) = S3

[(S1, S2) = S3

�(S1, S2) = S3

T (label) = S1



XPath: Bottom-up 
Evaluation of Core XPath

Algorithm (sketch): 

1. Transform the query into a tree composed of 
set operations; 

2. Starting at the root (or at the filters); evaluate 
the set operations bottom-up; 

3. The final results are the nodes corresponding 
to node ids.



XPath: Bottom-up 
Evaluation of Core XPath
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XPath: Bottom-up 
Evaluation of Core XPath

• each set operation and the bookkeeping takes    
O(|D|) time 

• the parse tree is of size O(|Q|) 

• hence, linear processing:

O(|D| · |Q|)



XPath: Bottom-up 
Evaluation of Full XPath

• we can still have polynomial evaluation of full XPath 
(similar principle as Core XPath)



XPath: Bottom-up 
Evaluation of Full XPath

Context-value tables: 

• each context in XPath can be represented using a 
context-value table (specifies situations in which a 
subquery should be evaluated): 

• determined by preceding XPath computations —- 
bottom-up algorithm

context :< x, k, n >



XPath: Bottom-up 
Evaluation of Full XPath

Expression Type Associated Relation R
num R ⊆ C×
bool R ⊆ C× {true, false}
nset R ⊆ C× 2dom

str R ⊆ C× char∗

Table 3: Expression types and associated relations.

The compatibility of our semantics definition (mod-
ulo the assumptions made in this paper to simplify the
data model) with [17] can easily be verified by inspec-
tion of the latter document.

It is instructive to compare the definition of
P [[π1/π2]] in Figure 5 with the procedure process-
location-step of Section 2 and the claim regarding
exponential-time query evaluation made there. In fact,
if the semantics definition of [17] (or of this section, for
that matter) is followed rigorously to obtain an analo-
gous functional implementation, query evaluation us-
ing this implementation requires time exponential in
the size of the queries.

6 Bottom-up Evaluation of XPath

In this section, we present a bottom-up semantics and
algorithm for evaluating XPath queries in polynomial
time. We discuss the intuitions which lead to poly-
nomial time evaluation (which we call the “context-
value table principle”), and establish the correctness
and complexity results.

Definition 6.1 (Semantics) We represent the four
XPath expression types nset, num, str, and bool using
relations as shown in Table 3. The bottom-up seman-
tics of expressions is defined via a semantics function

E↑ : Expression → nset ∪ num ∪ str ∪ bool,

given in Table 4 and as

E↑[[Op(e1, . . . , em)]] :=
{⟨⃗c,F [[Op]](v1, . . . , vm)⟩ | c⃗ ∈ C, ⟨⃗c, v1⟩ ∈ E↑[[e1]], . . . ,

⟨⃗c, vm⟩ ∈ E↑[[em]]}

for the remaining kinds of XPath expressions.

Now, for each expression e and each ⟨x, k, n⟩ ∈ C,
there is exactly one v s.t. ⟨x, k, n, v⟩ ∈ E↑[[e]].

Theorem 6.2 Let e be an arbitrary XPath expres-
sion. Then, for context node x, position k, and size
n, the value of e is v, where v is the unique value such
that ⟨x, k, n, v⟩ ∈ E↑[[e]].

The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
cussed above).

Expr. E : Operator Signature
Semantics E↑[[E]]

location step χ::t : → nset
{⟨x0, k0, n0, {x | x0χx, x ∈ T (t)}⟩ | ⟨x0, k0, n0⟩ ∈ C}
location step E[e] over axis χ: nset × bool → nset
{⟨x0, k0, n0, {x ∈ S | ⟨x, idxχ(x, S), |S|, true⟩ ∈ E↑[[e]]}⟩

| ⟨x0, k0, n0, S⟩ ∈ E↑[[E]]}
location path /π : nset → nset
C× {S | ∃k, n : ⟨root, k, n, S⟩ ∈ E↑[[π]]}
location path π1/π2 : nset × nset → nset
{⟨x, k, n, z⟩ | 1 ≤ k ≤ n ≤ |dom|,

⟨x, k1, n1, Y ⟩ ∈ E↑[[π1]],

y∈Y ⟨y, k2, n2, z⟩ ∈ E↑[[π2]]}
location path π1 | π2 : nset × nset → nset
E↑[[π1]] ∪ E↑[[π2]]

position() : → num
{⟨x, k, n, k⟩ | ⟨x, k, n⟩ ∈ C}
last() : → num
{⟨x, k, n, n⟩ | ⟨x, k, n⟩ ∈ C}

Table 4: Expression relations for location paths, posi-
tion(), and last().

Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts c⃗ and values v, such that e evaluates to v in
context c⃗. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6.

Query Evaluation. The idea of Algorithm 6.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 6.2.

Algorithm 6.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] ̸∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;

compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

6The number of expressions to be considered is fixed with
the parse tree of a given query.

Expression Type Associated Relation R
num R ⊆ C×
bool R ⊆ C× {true, false}
nset R ⊆ C× 2dom

str R ⊆ C× char∗

Table 3: Expression types and associated relations.

The compatibility of our semantics definition (mod-
ulo the assumptions made in this paper to simplify the
data model) with [17] can easily be verified by inspec-
tion of the latter document.

It is instructive to compare the definition of
P [[π1/π2]] in Figure 5 with the procedure process-
location-step of Section 2 and the claim regarding
exponential-time query evaluation made there. In fact,
if the semantics definition of [17] (or of this section, for
that matter) is followed rigorously to obtain an analo-
gous functional implementation, query evaluation us-
ing this implementation requires time exponential in
the size of the queries.

6 Bottom-up Evaluation of XPath

In this section, we present a bottom-up semantics and
algorithm for evaluating XPath queries in polynomial
time. We discuss the intuitions which lead to poly-
nomial time evaluation (which we call the “context-
value table principle”), and establish the correctness
and complexity results.

Definition 6.1 (Semantics) We represent the four
XPath expression types nset, num, str, and bool using
relations as shown in Table 3. The bottom-up seman-
tics of expressions is defined via a semantics function

E↑ : Expression → nset ∪ num ∪ str ∪ bool,

given in Table 4 and as

E↑[[Op(e1, . . . , em)]] :=
{⟨⃗c,F [[Op]](v1, . . . , vm)⟩ | c⃗ ∈ C, ⟨⃗c, v1⟩ ∈ E↑[[e1]], . . . ,

⟨⃗c, vm⟩ ∈ E↑[[em]]}

for the remaining kinds of XPath expressions.

Now, for each expression e and each ⟨x, k, n⟩ ∈ C,
there is exactly one v s.t. ⟨x, k, n, v⟩ ∈ E↑[[e]].

Theorem 6.2 Let e be an arbitrary XPath expres-
sion. Then, for context node x, position k, and size
n, the value of e is v, where v is the unique value such
that ⟨x, k, n, v⟩ ∈ E↑[[e]].

The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
cussed above).

Expr. E : Operator Signature
Semantics E↑[[E]]

location step χ::t : → nset
{⟨x0, k0, n0, {x | x0χx, x ∈ T (t)}⟩ | ⟨x0, k0, n0⟩ ∈ C}
location step E[e] over axis χ: nset × bool → nset
{⟨x0, k0, n0, {x ∈ S | ⟨x, idxχ(x, S), |S|, true⟩ ∈ E↑[[e]]}⟩

| ⟨x0, k0, n0, S⟩ ∈ E↑[[E]]}
location path /π : nset → nset
C× {S | ∃k, n : ⟨root, k, n, S⟩ ∈ E↑[[π]]}
location path π1/π2 : nset × nset → nset
{⟨x, k, n, z⟩ | 1 ≤ k ≤ n ≤ |dom|,

⟨x, k1, n1, Y ⟩ ∈ E↑[[π1]],

y∈Y ⟨y, k2, n2, z⟩ ∈ E↑[[π2]]}
location path π1 | π2 : nset × nset → nset
E↑[[π1]] ∪ E↑[[π2]]

position() : → num
{⟨x, k, n, k⟩ | ⟨x, k, n⟩ ∈ C}
last() : → num
{⟨x, k, n, n⟩ | ⟨x, k, n⟩ ∈ C}

Table 4: Expression relations for location paths, posi-
tion(), and last().

Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts c⃗ and values v, such that e evaluates to v in
context c⃗. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6.

Query Evaluation. The idea of Algorithm 6.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 6.2.

Algorithm 6.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] ̸∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;

compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

6The number of expressions to be considered is fixed with
the parse tree of a given query.
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Expression Type Associated Relation R
num R ⊆ C×
bool R ⊆ C× {true, false}
nset R ⊆ C× 2dom

str R ⊆ C× char∗

Table 3: Expression types and associated relations.

The compatibility of our semantics definition (mod-
ulo the assumptions made in this paper to simplify the
data model) with [17] can easily be verified by inspec-
tion of the latter document.

It is instructive to compare the definition of
P [[π1/π2]] in Figure 5 with the procedure process-
location-step of Section 2 and the claim regarding
exponential-time query evaluation made there. In fact,
if the semantics definition of [17] (or of this section, for
that matter) is followed rigorously to obtain an analo-
gous functional implementation, query evaluation us-
ing this implementation requires time exponential in
the size of the queries.

6 Bottom-up Evaluation of XPath

In this section, we present a bottom-up semantics and
algorithm for evaluating XPath queries in polynomial
time. We discuss the intuitions which lead to poly-
nomial time evaluation (which we call the “context-
value table principle”), and establish the correctness
and complexity results.

Definition 6.1 (Semantics) We represent the four
XPath expression types nset, num, str, and bool using
relations as shown in Table 3. The bottom-up seman-
tics of expressions is defined via a semantics function

E↑ : Expression → nset ∪ num ∪ str ∪ bool,

given in Table 4 and as

E↑[[Op(e1, . . . , em)]] :=
{⟨⃗c,F [[Op]](v1, . . . , vm)⟩ | c⃗ ∈ C, ⟨⃗c, v1⟩ ∈ E↑[[e1]], . . . ,
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for the remaining kinds of XPath expressions.

Now, for each expression e and each ⟨x, k, n⟩ ∈ C,
there is exactly one v s.t. ⟨x, k, n, v⟩ ∈ E↑[[e]].

Theorem 6.2 Let e be an arbitrary XPath expres-
sion. Then, for context node x, position k, and size
n, the value of e is v, where v is the unique value such
that ⟨x, k, n, v⟩ ∈ E↑[[e]].

The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
cussed above).

Expr. E : Operator Signature
Semantics E↑[[E]]

location step χ::t : → nset
{⟨x0, k0, n0, {x | x0χx, x ∈ T (t)}⟩ | ⟨x0, k0, n0⟩ ∈ C}
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location path /π : nset → nset
C× {S | ∃k, n : ⟨root, k, n, S⟩ ∈ E↑[[π]]}
location path π1/π2 : nset × nset → nset
{⟨x, k, n, z⟩ | 1 ≤ k ≤ n ≤ |dom|,

⟨x, k1, n1, Y ⟩ ∈ E↑[[π1]],

y∈Y ⟨y, k2, n2, z⟩ ∈ E↑[[π2]]}
location path π1 | π2 : nset × nset → nset
E↑[[π1]] ∪ E↑[[π2]]

position() : → num
{⟨x, k, n, k⟩ | ⟨x, k, n⟩ ∈ C}
last() : → num
{⟨x, k, n, n⟩ | ⟨x, k, n⟩ ∈ C}

Table 4: Expression relations for location paths, posi-
tion(), and last().

Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts c⃗ and values v, such that e evaluates to v in
context c⃗. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6.

Query Evaluation. The idea of Algorithm 6.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 6.2.

Algorithm 6.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] ̸∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;

compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

6The number of expressions to be considered is fixed with
the parse tree of a given query.
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The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
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Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts c⃗ and values v, such that e evaluates to v in
context c⃗. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6.

Query Evaluation. The idea of Algorithm 6.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 6.2.

Algorithm 6.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] ̸∈ R do
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take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;
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6The number of expressions to be considered is fixed with
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Context-Value Principle (CVT): 

• the size of each of the context-value tables is 
polynomial 

• computing each combination step of the 
expression is polynomial 

• hence, the computation is polynomial



XPath: Bottom-up 
Evaluation of Full XPath

GOTTLOB EXAMPLE SLIDES



XPath: Bottom-up 
Evaluation of Full XPath

Space Complexity: 

• O(|Q|) relations are created,  

• nset are bounded by O(|D|4), bool are bounded by 
O(|D|3) 

• numbers and string computable in XPath are of 
size O(|D||Q|)

O(|D|4 · |Q|2)
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Time Complexity: 

• O(|Q|) computations are needed (parse tree size is 
linear in the query size),  

• O(|D|5|Q|)  for each expression relation

O(|D|5 · |Q|2)
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