

Algorithms for Data Science Web Advertising

Silviu Maniu

October 16th, 2020

Université Paris-Saclay

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

Banner Ads

First iteration: banner ads (around 1995)

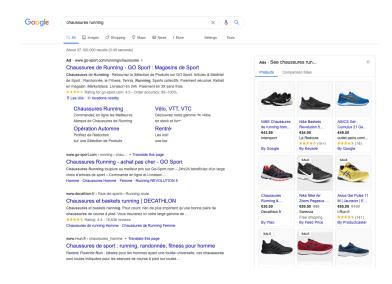
Banner Ads

First iteration: banner ads (around 1995)

- · charging per 1,000 "impressions" (clicks)
- · CPM cost per thousand impressions (as in TV, print media)
- · untargeted vs. demographically targeted
- · low click through rates low return on investment

Performance-Based Advertising

Second iteration: ads on search results (around 2001)



Performance-Based Advertising

Second iteration: ads on search results (around 2001)

- advertisers bid on search keywords
- · on click highest bidder ad is shown
- · charging only if add is clicked
- adopted by Google around 2002 Adwords

Performance-Based Advertising

Part of Web 2.0 – huge industry (several billion \$)

Problem: what ads to show for a given query

- another related problem: which search terms should an advertiser bid on, and for how much
- part of computational game theory

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

Online Algorithms

Data Streams: limited resources to process data as it comes

Online algorithms

- decision must be made immediately as data comes
- · vs. **offline** data is processed in its entirety

Greedy Algorithm for Online Optimization Problems

Optimization problem: maximizing or minimizing an **objective function** on the data

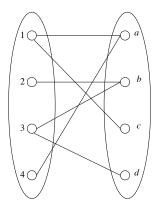
Greedy algorithm: take decision locally, by **optimizing** only based on the **current** element and the past

Not always optimal vs. offline algorithsm:

• **competitive ratio**: the ratio between the offline solution and the online solution **over all inputs** $c = \min_G \frac{|M_g|}{|M_o|}$

Matching Problem

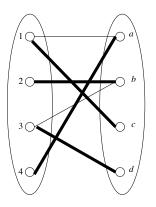
Bipartite Graph: a graph $G(V_1 \cup V_2, E)$ having two disjoint sets of nodes V_1 and V_2 and edges **only** havins one endpoint in V_1 and one in V_2 , i.e., $E \subseteq V_1 \times V_2$



Matching Problem

Matching: choosing a **subset of the edges** in the bipartite graph s.t. **no node has more than two edges** in the matching

- perfect every node is in the matching
- · maximal has the largest number of edges possible



Greedy Algorithm for Matching

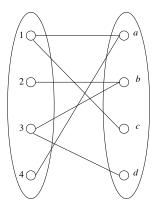
Offline case: algorithms for finding maximal matchings are $\mathcal{O}(n^2)$, where n=|E|

Online case: can use the greedy algorithm:

- 1. consider the edges in the order they arrive
- 2. add edge (x, y) only if neither x nor y are endpoints

Example of Greedy Matching

Edges arrive in the order: (1, a), (1, c), (2, b), (3, b), (3, d), (4, a)



Result of greedy matching: (1, a), (2, b), (3, d) – not maximal

Competitive Ratio of Greedy Matching

- M_o maximal matching, M_g greedy matching
- L left nodes matched in M_o but not in M_g
- R right nodes connected to any node in L

Claim: every node in R is matched in M_g

- · prove by contradiction: assume it is not the case
- then there will exist edge (l, r), $l \in L$
- then, it should be matched (neither is added to the matching)
- · contradiction!

Competitive Ratio of Greedy Matching

Claim: every node in R is matched in M_g

- $|M_o| \le |M_g| + |L|$ only nodes in L can be matched in M_o
- $|L| \leq |R|$ in M_o , all nodes in L are matched
- $\cdot |R| \leq |M_g|$ every node in R in mateched in M_g
- this gives us $|M_g| \geq rac{|M_o|}{2}$ lower bound on the competitive ratio

But 1/2 is also an upper bound – can find a counter example

Competitive ratio is then exactly 1/2

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

Adwords Problem

Problem: match queries in a search engines with advertisers

We have:

- a set of **bids** by advertisers for search queries
- · click-through rate for each advertiser-query pair
- budget for each advertiser (time, money, etc.)
- · limit on the number of ads to be displayed

Adwords Problem

Problem: match queries in a search engines with advertisers

Restrictions on the set of advertisers:

- the size is under the limit of number of ads
- · each advertiser in the set has bid on the query
- · each advertiser has enough budget left over

Adwords Setting

- 1. **stream of queries** arrives at search engines q_1, q_2, \dots
- 2. advertisers bid on each query
- 3. when q_i arrives search engine picks a subset of advertisers

Objective: maximize search engine revenue

If we consider queries as being the "left" side and advertisers the "right" side in a bipartite graph – **online bipartite matching**

• weighted case: the matching depends on the CTR and the budget

Adwords in Practice

In practice: combine CTR and bid – expected revenue

- · value of an ad expected revenue
- revenue to the search engine sum of values of matched ads

Advertiser	CTR	Bid	CTR × Bid
А	0.02	7.5	0.15
В	0.05	5.0	0.25
С	0.01	1.0	0.01

Measuring CTR

Value of an ad is directly linked to the CTR rate

high bid is useless if the CTR is very low

Click-through rate is measured historically – difficult problem

- explore: do we try an ad to measure the CTR rate for future campaigns?
- **exploit**: do we use the current known CTR rate, even if they could be outdated?

Greedy Algorithm

Setting:

- · there is one ad shown for each query
- · all advertisers have the same budget B
- · all ads have same CTR
- · value is then the same

Greedy algorithm:

- · pick any advertiser who has bid for that query
- same competitive ratio as in online matching 1/2

Worst-case Greedy

Advertiser A: bids on query x, budget 4 Advertiser B: bids on queries x and y, budget 4

Stream: x x x x y y y y

Greedy choice:

• worst case: B B B B

· optimal: A A A A B B B B

· competitive ratio: 1/2

BALANCE algorithm [Mehta et al., 2007]

BALANCE Algorithm:

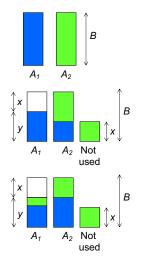
- · assign query to the bidder having the most budget left
- · competitive ratio 3/4
- tie breaking: must be deterministic

Previous example:

- if A is preferred to B: A B A B B B...
- establishes an upper bound on competitive ratio for 2 bidders

BALANCE – Lower Bound for 2 Bidders

Assumption: advertisers A_1 , A_2 budget B (consumed by the optimal algo), revenue 2B



BALANCE must exhaust the budget of at least one bidder, e.g., A_2 Case of assigned bids (x + y = B):

- at least half of the queries are assigned to A_1 : $y \ge B/2$, so $y \ge x$
- more than half of the queries are assigned to A_2 : remaining budget of A_2 is less than B/2, so $x \le B/2$, so $y \ge x$

Minimal BALANCE revenue at x = y = B/2, revenue 3B/2 competitive ratio $\frac{3B/2}{2B} = 3/4$

BALANCE – Multiple Bidders

In the general case, BALANCE competitive ratio is not much lower than the simple case:

- competitive ratio: 1 1/e = 0.63...
- · no online algorithm has a better competitve ratio

BALANCE – Worst Case for Multiple Bidders

Advertisers: $N - A_1, \dots, A_N$, each having budget B > N

Queries: N rounds of B queries

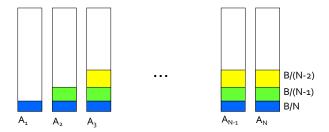
Bids: round i - bidders A_i, \ldots, A_n

Optimum allocation: allocate round i queries to A_i

· revenue N · B

BALANCE – Worst Case for Multiple Bidders

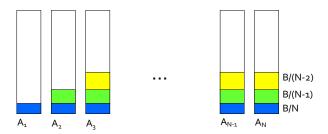
BALANCE allocation



- BALANCE assigns queries in round k to N (k 1) advertisers
- · sum of allocation to each advertiser A_k,\ldots,A_N : $S_k=\sum_{i=1}^{k-1}\frac{B}{N-(i-1)}$
- the smallest k at which $S_k \ge B$ is the point after which no advertisers can be allocated k = N(1 1/e)

BALANCE – Worst Case for Multiple Bidders

BALANCE allocation



- after k = N(1 1/e) we cannot get any revenue
- total revenue: $B \cdot N(1 1/e)$
- upper bound on competitive ratio: 1 1/e

BALANCE with Arbitrary Bids

BALANCE works well when bids are o or 1

 \cdot if arbitrary bids, it can fail and have competitive ratio o

Example:

- advertisers A_1 , A_2 , one query q arriving 10 times
- **A**₁: bids **1**, budget **110**
- **A**₂: bids **10**, budget **100**
- optimal: assign all queries to A2, revenue 100
- BALANCE: assigns all queries to A₁, revenue 10

Generalized BALANCE

BALANCE can be generalized to arbitrary bids:

- bid x_i , budget b_i , amount spend so far m_i
- fraction of leftover budget $f_i = 1 m_i/b_i$
- · for a query q, use $\psi_i(q) = x_i(1 e^{-f_i})$

Decision:

· allocate query ${m q}$ to bidder ${m i}$ having largest value of $\psi_{{m i}}({m q})$

Same competitive ratio: 1 - 1/e

Adwords Implementation

In practice

- advertisers bid of sets of words
- if a search query contains exactly those words the advertiser becomes a bidder
- · can use distributed hash tables
- queries can be distributed on several machines also multiple streams

Another applications:

 Google also matches ads to emails – much harder problem (mails are much larger)

Acknowledgments

The contents follows Chapter 8 of [Leskovec et al., 2020]. Figures in slides 11, 12, 14, 26, 29, and 30 are taken from https://www.mmds.org/

References i

Leskovec, J., Rajaraman, A., and Ullman, J. (2020). *Mining of Massive Datasets*.

Cambridge University Press.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. (2007). **Adwords and generalized online matching.**J. ACM, 54(5):22-es.