
Algorithms for Data Science
Finding Similar Items

Silviu Maniu
September 11th, 2020

Université Paris-Saclay

1/32

Table of contents

Similar Items Problem

Shingling

Min-Hashing

Locality-Sensitive Hashing (LSH)

2/32

Similar Items

3/32

General Problem

Many data mining tasks can be expressed as finding similar sets.

• same as finding near-neighbours in high-dimensional space

Some applications:

• similar pages on the Web: duplicate detection for search engines
• customer who purchased similar products
• images having similar features

4/32

Similarity and Distance

Input – set of high dimensional data points represented as vectors
(x1 x2 x3 ... xn) and a distance function d(pi,pj)

Problem – find pairs of data points (pi,pj) that are close, i.e., in a
distance threshold d(pi,pj) 6 τ

• comparing all pairs would take O(N2) (N number of data points)
– too expensive

• can be done much faster, around O(N)

5/32

Documents and Set Similarity

In this lecture, we will study how to find similar documents –
near-duplicate pairs

• plagiarism, mirror pages, articles having the same source

Documents are represented as sets / bags – we will discuss how

Focus on Jaccard distance/similarity:

• Jaccard similarity of two sets S1, S2:

sim(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

• Jaccard distance is:

d(S1, S2) = 1− sim(S1, S2)
6/32

Jaccard similarity/distance

1. similarity 3/8 – fraction of the green area
2. distance 5/8 – fraction of the red area

7/32

Steps for Finding Similar Documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

1. shingling – converting documents to sets
2. min-hashing – convert each document to a short signature
3. locality-sensitive hashing – reduce the number of pairs of

signatures to compare

8/32

Table of contents

Similar Items Problem

Shingling

Min-Hashing

Locality-Sensitive Hashing (LSH)

9/32

Shingling

Naïve way – represent documents as the set of their words – would
find many documents that are similar (common words in the
language of the document)

• better way – shingling

Shingling: k-shingle = any substring of length k found in the
document

• the document is then the set of shingles appearing at least once

Example

• take the document D represented by the string abcdabd

• the set of 2-shingles is then {ab, bc, cd, da, bd}
10/32

Shingling in Practice

Principle – k should be picked large enough that the probability of
any given shingle appearing in any given document is as low as
possible

• assume a document has the 27 chars in the ASCII character set
and k = 5

• the number of shingles is 275 = 14,348,907 possible shingles – so
k = 5 works well for any document that is much smaller than the
above size

11/32

Shingling in Practice

• in practice, k = 5 is good for emails, k = 10 is good for large
documents

• the size of the sets can be larger that the documents – hash the
shingles to an integer having a limited number of bits – e.g., for
k = 2 we only need 10 bits:

{ab, bc, cd, da, bd} → {342, 825, 312, 54}

• the similarity/distance is the Jaccard similarity of sets, applied
on the k-shingle sets of each document

12/32

Representing Sets of Documents as a Matrix

Conceptually, we will represent the sets of documents as a Boolean
matrix

• rows are the indexes of the possible shingles
• colums represent the documents as

Running example

Documents represented as sets D1 = {a,d}, D2 = {c}, D3 = {b,d, e},
D4 = {a, c,d}

Table:

Shingle hash D1 D2 D3 D4

1 1 0 0 1
2 0 0 1 0
3 0 1 0 1
4 1 0 1 1
5 0 0 1 0

13/32

Table of contents

Similar Items Problem

Shingling

Min-Hashing

Locality-Sensitive Hashing (LSH)

14/32

Why Min-Hashing?

The encoding of sets as boolean values can still be too costly – cost =
the number of di�erent possible shingles, or the size of the universal
set

We want to minimize the size of this set, and transform the set into a
signature set

• in other words, compress the size of the columns (=documents)
in the matrix

Principle – similarity of signature sets = similarity of shingle sets =
similarity of documents

15/32

Min-Hashing for Jaccard similarity

Objective – find a hash function h (on the shingle set of the
documents), such that:

• if sim(D1,D2) is high, then with high probability, h(D1) = h(D2)

• if sim(D1,D2) is low, then with high probability, h(D1) 6= h(D2)

Not all similarity metrics / distances have such a hash function!

• Jaccard has one – Min-Hashing

16/32

Min-Hashing for Jaccard similarity

Hash each column C of the table to a small signature h(C):

1. h(C) is small enough to fit in main memory
2. sim(Ci, Cj) is the same as sim(h(Ci),h(Cj))

17/32

Min-Hashing

Shu�e the rows of the matrix using a random permutation π

Define the hash function hπ(C) as the first row (in permutation order
of π) where we find a value of 1

Example
Permutation:
π D1 D2 D3 D4

2 0 0 1 0
5 0 0 1 0
1 1 0 0 1
4 1 0 1 1
3 0 1 0 1

Min-Hash:
D1 D2 D3 D4

1 3 2 1

18/32

Min-Hash Property

D1 D4

1 1
0 0
0 1
1 1
0 0

sim(D1,D4) = 2/3

Property Pr[hπ(D1) = hπ(D2)] = sim(D1,D4), for any
random permutation π

Proof sketch:

• let s ∈ D a shingle

• equally likely that s ∈ D is mapped to the min
element; Pr[π(s) = min(π(D))] = 1/|D|

• let s be such that π(s) = min(π(D1 ∪ D4))

• either π(s) = min(π(D1)) if s ∈ D1, or
π(s) = min(π(D1)) if s ∈ D4

• probability that both are true is Pr[s ∈ D1 ∩ D4]

• Pr[hπ(D1) = hπ(D2)] =
|D1∩D4|
|D1∪D4| = sim(D1,D4).

19/32

Min-Hash in Practice

In practice, we need multiple hash functions, and thus the similarity
of two documents is the fraction of the hash functions in which they
agree

• this works because of the min-hash property, the similarity of
columns is the same as the expected similarity of their signatures

Implementation

• permuting rows is too costly!
• we can use well-chosen hash functions that achieve a

permutation
• the more hash functions we choose, the more exact the

computation is – but more costly

Signature of a document: O(K) (number of hash functions)
20/32

Min-Hash in Practice

D1 D2 D3 D4 x + 1 mod 5 3x + 1 mod 5

1 1 0 0 1 1 1
2 0 0 1 0 2 4
3 0 1 0 1 3 2
4 1 0 1 1 4 0
5 0 0 1 0 0 3

Algorithm: Choose K permutation functions, initialize sig(i, c) =∞,
and then for each row(=shingle) r:

1. compute h1(r), . . . ,hk(r)
2. for each column(=document) c: if c has 1, then set

sig(i, c) = min(hi(r), sig(i, c)) for i ∈ 1, . . . ,K

21/32

Table of contents

Similar Items Problem

Shingling

Min-Hashing

Locality-Sensitive Hashing (LSH)

22/32

Objectives

We achieved smaller documents, but we still need to find a way to
compare as few pairs as possible

Idea find a way to only compare pairs that have a similarity above a
threshold t

• LSH: use a function f (x, y) that tell whether the pair x, y is a
candidate pair for comparison

23/32

LSH for Min-Hashing

Assume we have a similarity threshold s

Columns x and y of the signature matrix M are candidate pairs if the
signature agrees on at least a fraction s of their rows

• reminder we assume that the min-hashed signature output the
same expected similarity as the real one

Idea behing LSH for Min-Hashing:

• hash columns of the signature matrix several times, so that only
similar columns are likely to hash to the same bucket –
candidate pairs are those that hash to the same bucket

• we can divide M into b bands of r rows each

24/32

LSH for Min-Hashing

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

• for each band, hash the portion of the column into k buckets
• candidates are column pairs (=document pairs) hashing to the

same bucket at least once
• have to tune b and r to catch most similar pairs, but fewer

non-similar pairs
25/32

Tuning b and r

Tradeo� number of min-hashes, number of bands b, number of rows
per band r

How to compute this?

1. prob. that signatures agree in all rows of one band is sr

2. prob. that signatures disagree in at least one row is 1− sr

3. the prob. that signatures disagree in at least one row of each of
the bands is (1− sr)b

4. candidate pair if agrees in all the rows of at least one band, prob.
is 1− (1− sr)b

26/32

S-curve for LSH

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

Similarity

Probability
of sharing
a bucket

have to choose the threshold roughly where the probability is 1/2 –
where the curve is steepest

Approximate threshold t = (1/b)1/r

27/32

Example

Say D1 and D2 are 80% similar, b = 20, r = 5

• prob. D1,D2 identical in a given band 0.85 = 0.328
• prob. are not similar in any of the bands: (1− 0.328)20 = 0.00035

Only 0.035% of the documents are false negatives (similar but they
do not hash in the same bucket anywhere), 99.965% of true positives
are found

28/32

Example

Say D1 and D2 are only 30% similar, b = 20, r = 5

• prob. D1,D2 identical in a given band 0.35 = 0.00243
• prob. are similar in at least one of the bands:

1− (1− 0.00243)20 = 0.0474

Around 4.74% of documents having similarity of 30% end as
candidate pairs – false positives (since they are not similar, but we
still have to check them)

29/32

Using the S-curve

Have to select r and b to get the best curve – one which minimizes
the false negatives (blue) and false positives (green)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

30/32

Putting it All Together

Outline of the steps for similar items:

1. pick a value of k, and construct k-shingles for each documents
2. pick a length n for the min-hash signatures (number of

permutations)
3. choose a threshold t, along with b and r such that br = n and
t = (1/b)1/r

4. construct candidate pairs by applying LSH
5. check each candidate pairs in main memory for similarity

31/32

To Go Further

Other similarity/distance functions with various application (Sec. 3.5
of [Leskovec et al., 2020])

The mathematical theory behind LSH functions and applying LSH to
other similarities (Sec. 3.6 and 3.7 of [Leskovec et al., 2020],
[Indyk et al., 1997])

32/32

Acknowledgments

The contents and some figures taken from Chapter 3 of
[Leskovec et al., 2020]. https://www.mmds.org/

https://www.mmds.org/

References i

Broder, A. (1997).
On the resemblance and containment of documents.
In Proceedings of the Compression and Complexity of Sequences
(SEQUENCES).
Indyk, P., Motwani, R., Raghavan, P., and Vempala, S. (1997).
Locality-preserving hashing in multidimensional spaces.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing (STOC), page 618–625.

Leskovec, J., Rajaraman, A., and Ullman, J. (2020).
Mining of Massive Datasets.
Cambridge University Press.

	Similar Items Problem
	Shingling
	Min-Hashing
	Locality-Sensitive Hashing (LSH)
	Appendix

