
Algorithms for Data Science
Finding Similar Items

Silviu Maniu
September 11th, 2020

Université Paris-Saclay

1/32



Table of contents

Similar Items Problem

Shingling

Min-Hashing

Locality-Sensitive Hashing (LSH)

2/32



Similar Items

3/32



General Problem

Many data mining tasks can be expressed as finding similar sets.

• same as finding near-neighbours in high-dimensional space

Some applications:

• similar pages on the Web: duplicate detection for search engines
• customer who purchased similar products
• images having similar features
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Similarity and Distance

Input – set of high dimensional data points represented as vectors
(x1 x2 x3 ... xn) and a distance function d(pi,pj)

Problem – find pairs of data points (pi,pj) that are close, i.e., in a
distance threshold d(pi,pj) 6 τ

• comparing all pairs would take O(N2) (N number of data points)
– too expensive

• can be done much faster, around O(N)
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Documents and Set Similarity

In this lecture, we will study how to find similar documents –
near-duplicate pairs

• plagiarism, mirror pages, articles having the same source

Documents are represented as sets / bags – we will discuss how

Focus on Jaccard distance/similarity:

• Jaccard similarity of two sets S1, S2:

sim(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

• Jaccard distance is:

d(S1, S2) = 1− sim(S1, S2)
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Jaccard similarity/distance

1. similarity 3/8 – fraction of the green area
2. distance 5/8 – fraction of the red area

7/32



Steps for Finding Similar Documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min 
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

1. shingling – converting documents to sets
2. min-hashing – convert each document to a short signature
3. locality-sensitive hashing – reduce the number of pairs of

signatures to compare
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Shingling

Naïve way – represent documents as the set of their words – would
find many documents that are similar (common words in the
language of the document)

• better way – shingling

Shingling: k-shingle = any substring of length k found in the
document

• the document is then the set of shingles appearing at least once

Example

• take the document D represented by the string abcdabd

• the set of 2-shingles is then {ab, bc, cd, da, bd}
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Shingling in Practice

Principle – k should be picked large enough that the probability of
any given shingle appearing in any given document is as low as
possible

• assume a document has the 27 chars in the ASCII character set
and k = 5

• the number of shingles is 275 = 14,348,907 possible shingles – so
k = 5 works well for any document that is much smaller than the
above size
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Shingling in Practice

• in practice, k = 5 is good for emails, k = 10 is good for large
documents

• the size of the sets can be larger that the documents – hash the
shingles to an integer having a limited number of bits – e.g., for
k = 2 we only need 10 bits:

{ab, bc, cd, da, bd} → {342, 825, 312, 54}

• the similarity/distance is the Jaccard similarity of sets, applied
on the k-shingle sets of each document
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Representing Sets of Documents as a Matrix

Conceptually, we will represent the sets of documents as a Boolean
matrix

• rows are the indexes of the possible shingles
• colums represent the documents as

Running example

Documents represented as sets D1 = {a,d}, D2 = {c}, D3 = {b,d, e},
D4 = {a, c,d}

Table:

Shingle hash D1 D2 D3 D4

1 1 0 0 1
2 0 0 1 0
3 0 1 0 1
4 1 0 1 1
5 0 0 1 0
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Why Min-Hashing?

The encoding of sets as boolean values can still be too costly – cost =
the number of di�erent possible shingles, or the size of the universal
set

We want to minimize the size of this set, and transform the set into a
signature set

• in other words, compress the size of the columns (=documents)
in the matrix

Principle – similarity of signature sets = similarity of shingle sets =
similarity of documents
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Min-Hashing for Jaccard similarity

Objective – find a hash function h (on the shingle set of the
documents), such that:

• if sim(D1,D2) is high, then with high probability, h(D1) = h(D2)

• if sim(D1,D2) is low, then with high probability, h(D1) 6= h(D2)

Not all similarity metrics / distances have such a hash function!

• Jaccard has one – Min-Hashing
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Min-Hashing for Jaccard similarity

Hash each column C of the table to a small signature h(C):

1. h(C) is small enough to fit in main memory
2. sim(Ci, Cj) is the same as sim(h(Ci),h(Cj))
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Min-Hashing

Shu�e the rows of the matrix using a random permutation π

Define the hash function hπ(C) as the first row (in permutation order
of π) where we find a value of 1

Example
Permutation:
π D1 D2 D3 D4

2 0 0 1 0
5 0 0 1 0
1 1 0 0 1
4 1 0 1 1
3 0 1 0 1

Min-Hash:
D1 D2 D3 D4

1 3 2 1
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Min-Hash Property

D1 D4

1 1
0 0
0 1
1 1
0 0

sim(D1,D4) = 2/3

Property Pr[hπ(D1) = hπ(D2)] = sim(D1,D4), for any
random permutation π

Proof sketch:

• let s ∈ D a shingle

• equally likely that s ∈ D is mapped to the min
element; Pr[π(s) = min(π(D))] = 1/|D|

• let s be such that π(s) = min(π(D1 ∪ D4))

• either π(s) = min(π(D1)) if s ∈ D1, or
π(s) = min(π(D1)) if s ∈ D4

• probability that both are true is Pr[s ∈ D1 ∩ D4]

• Pr[hπ(D1) = hπ(D2)] =
|D1∩D4|
|D1∪D4| = sim(D1,D4).
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Min-Hash in Practice

In practice, we need multiple hash functions, and thus the similarity
of two documents is the fraction of the hash functions in which they
agree

• this works because of the min-hash property, the similarity of
columns is the same as the expected similarity of their signatures

Implementation

• permuting rows is too costly!
• we can use well-chosen hash functions that achieve a

permutation
• the more hash functions we choose, the more exact the

computation is – but more costly

Signature of a document: O(K) (number of hash functions)
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Min-Hash in Practice

D1 D2 D3 D4 x + 1 mod 5 3x + 1 mod 5

1 1 0 0 1 1 1
2 0 0 1 0 2 4
3 0 1 0 1 3 2
4 1 0 1 1 4 0
5 0 0 1 0 0 3

Algorithm: Choose K permutation functions, initialize sig(i, c) =∞,
and then for each row(=shingle) r:

1. compute h1(r), . . . ,hk(r)
2. for each column(=document) c: if c has 1, then set

sig(i, c) = min(hi(r), sig(i, c)) for i ∈ 1, . . . ,K
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Objectives

We achieved smaller documents, but we still need to find a way to
compare as few pairs as possible

Idea find a way to only compare pairs that have a similarity above a
threshold t

• LSH: use a function f (x, y) that tell whether the pair x, y is a
candidate pair for comparison
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LSH for Min-Hashing

Assume we have a similarity threshold s

Columns x and y of the signature matrix M are candidate pairs if the
signature agrees on at least a fraction s of their rows

• reminder we assume that the min-hashed signature output the
same expected similarity as the real one

Idea behing LSH for Min-Hashing:

• hash columns of the signature matrix several times, so that only
similar columns are likely to hash to the same bucket –
candidate pairs are those that hash to the same bucket

• we can divide M into b bands of r rows each
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LSH for Min-Hashing

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.

• for each band, hash the portion of the column into k buckets
• candidates are column pairs (=document pairs) hashing to the

same bucket at least once
• have to tune b and r to catch most similar pairs, but fewer

non-similar pairs
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Tuning b and r

Tradeo� number of min-hashes, number of bands b, number of rows
per band r

How to compute this?

1. prob. that signatures agree in all rows of one band is sr

2. prob. that signatures disagree in at least one row is 1− sr

3. the prob. that signatures disagree in at least one row of each of
the bands is (1− sr)b

4. candidate pair if agrees in all the rows of at least one band, prob.
is 1− (1− sr)b

26/32



S-curve for LSH

t r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 

Similarity

Probability
of sharing
a bucket

have to choose the threshold roughly where the probability is 1/2 –
where the curve is steepest

Approximate threshold t = (1/b)1/r
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Example

Say D1 and D2 are 80% similar, b = 20, r = 5

• prob. D1,D2 identical in a given band 0.85 = 0.328
• prob. are not similar in any of the bands: (1− 0.328)20 = 0.00035

Only 0.035% of the documents are false negatives (similar but they
do not hash in the same bucket anywhere), 99.965% of true positives
are found
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Example

Say D1 and D2 are only 30% similar, b = 20, r = 5

• prob. D1,D2 identical in a given band 0.35 = 0.00243
• prob. are similar in at least one of the bands:

1− (1− 0.00243)20 = 0.0474

Around 4.74% of documents having similarity of 30% end as
candidate pairs – false positives (since they are not similar, but we
still have to check them)
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Using the S-curve

Have to select r and b to get the best curve – one which minimizes
the false negatives (blue) and false positives (green)
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Putting it All Together

Outline of the steps for similar items:

1. pick a value of k, and construct k-shingles for each documents
2. pick a length n for the min-hash signatures (number of

permutations)
3. choose a threshold t, along with b and r such that br = n and
t = (1/b)1/r

4. construct candidate pairs by applying LSH
5. check each candidate pairs in main memory for similarity

31/32



To Go Further

Other similarity/distance functions with various application (Sec. 3.5
of [Leskovec et al., 2020])

The mathematical theory behind LSH functions and applying LSH to
other similarities (Sec. 3.6 and 3.7 of [Leskovec et al., 2020],
[Indyk et al., 1997])
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