UNIVERSITE PARIS-SACLAY

Social Data Management Communities

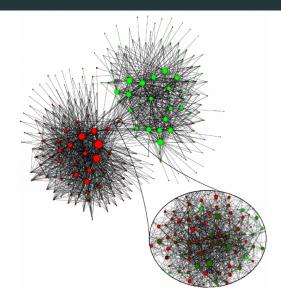
Silviu Maniu¹

November 20th, 2020

¹Université Paris-Saclay

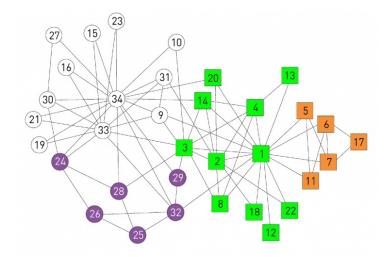
Communities in Graphs

Graph Communities



Communities in the Belgium call graph

Graph Communities



Communities in Zachary's Karate club

Hypothesis

A graph's community structure is uniquely encoded in its topology.

Hypothesis

A community is a locally dense connected subgraph in a network.

A few approaches:

- 1. **Maximum Cliques**: a community is a subgraph whose nodes are all connected to each other.
- Strong Communities: relaxation of cliques, depending on the internal degree (number of neighbors in the community) vs. external degree (neighbours outside of the community) – a strong community has a greater internal degree than external degree.

A naïve algorithm for detecting 2 communities:

- divide the graph in two (find a cut) and decide if they are strong communities, and
- 2. choose the best cut over all possible cuts.

This can generalize to more communities, but it needs to generate an **exponential** number of cuts.

We need polynomial algorithms to be able to detect efficiently the communities in a graph.

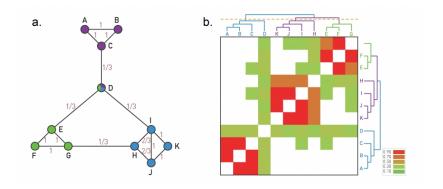
One approach is **hierarchical clustering**:

- uses a similarity matrix X, where x_{ij} encodes the similarity between nodes i and j, and
- based on this, **agglomerative algorithms** merge nodes into the same community, while
- **divisive algorithms** isolate communities by removing low similarity links.

Agglomerative Algorithm – Ravasz

- 1. **Define the similarity matrix**: various ways, but the algorithm uses the *topological overlap matrix*, encoding the number of common neighbors over the maximum possible.
- Define group similarity: computed as the average cluster similarity – the average of x_{ii} over all node pairs
- 3. Apply the Hierarchical Clustering:
 - 3.1 assign each node to a community of their own,
 - 3.2 find the community pairs with highest similarity and merge them,
 - 3.3 compute the similarity between all communities
 - 3.4 repeat until only one community exists.
- 4. The community structure will be encoded in the *Dendogram*, showing the order in which communities were merged (see next slide).

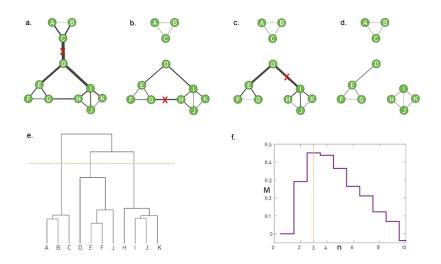
Agglomerative Algorithm – Ravasz



Divisive algorithms remove edges:

- Define centrality: x_{ij} needs to select nodes in different communities, e.g., betweenness.
- 2. Apply the Hierarchical Clustering:
 - 2.1 remove the link with the largest centrality
 - 2.2 recompute the centrality of all other links
 - 2.3 repeat until no links exist
- 3. The community structure will be encoded in the **Dendogram**, showing the order in which edges were removed (see next slide).

Divisive Algorithm – Girvan-Newman



Hypothesis Random networks lack a community structure.

Modularity

Consider a graph having some partition into communities C having L_C links. If L_C is greater than the number of links expected by a random wiring having the same degree distribution, then it is a potential community.

This is measured by the **modularity**:

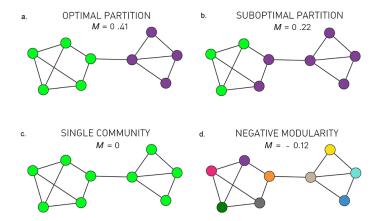
$$M_{\mathsf{C}} = \frac{1}{2L} \sum_{(i,j)\in\mathsf{C}} (\mathsf{A}_{ij} - p_{ij}),$$

where p_{ij} can be computed by randomizing the original network, e.g.,:

$$p_{ij} = rac{k_i k_j}{2L}.$$

For the entire graph: we sum the modularities over all communities.

Modularity – Examples



Hypothesis

The partition with maximum modularity corresponds to the optimal community structure.

For computation efficiency concerns, all algorithms use a *greedy approach*:

- 1. Assign each node to its own community.
- Inspect each community pair connected by at least one link and merge the ones having the highest increase in modularity ΔM for the whole network.
- 3. Repeat until all nodes are in a single community.
- 4. Choose the partition with the highest modularity.

algorithm	type	complexity
Ravazs	agglomerative	O(N ²)
Girvan–Newman	divisive	O(N ³)
greedy optimized	modularity	$O(N \log^2 N)$
Louvain	modularity	O(L)
Infomap	flow	$O(N \log N)$

- **Do communities really exist?**: given a network, do we know it is always organized in communities?
- Are the hypotheses valid?: is a community only identified by its wiring diagram?
- Does everybody belong to a community?
- How do we know which measure is the valid one?: centrality, similarity, modularity, flow, etc.

Figures in slides 3, 4, 11, 13, and 16 taken from the book "Network Science" by A.-L. Barabási. The contents is partly inspired by the flow of Chapter 9 of the same book. http://barabasi.com/networksciencebook/

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10).

Girvan, M. and Newman, M. E. J. (2002).
Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826.

Newman, M. E. J. (2004). **Fast algorithm for detecting community structure in networks.** *Phys. Rev. E*, 69.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586):1551-1555.