
Network-aware Search in Social Tagging Applications:
Instance Optimality versus Efficiency ⇤

Silviu Maniu
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

smaniu@cs.hku.hk

Bogdan Cautis
Université Paris-Sud &

INRIA Saclay
91405 Orsay Cedex, France

bogdan.cautis@u-psud.fr

ABSTRACT
We consider in this paper top-k query answering in social applica-
tions, with a focus on social tagging. This problem requires a sig-
nificant departure from socially agnostic techniques. In a network-
aware context, one can (and should) exploit the social links, which
can indicate how users relate to the seeker and how much weight
their tagging actions should have in the result build-up. We propose
algorithms that have the potential to scale to current applications.

While the problem has already been considered in previous lit-
erature, this was done either under strong simplifying assumptions
or under choices that cannot scale to even moderate-size real-world
applications. We first revisit a key aspect of the problem, which
is accessing the closest or most relevant users for a given seeker.
We describe how this can be done on the fly (without any pre-
computations) for several possible choices – arguably the most
natural ones – of proximity computation in a user network. Based
on this, our top-k algorithm is sound and complete, addressing the
applicability issues of the existing ones. Moreover, it performs sig-
nificantly better in general and is instance optimal in the case when
the search relies exclusively on the social weight of tagging actions.

To further address the efficiency needs of online applications,
for which the exact search, albeit optimal, may still be expensive,
we then consider approximate algorithms. Specifically, these rely
on concise statistics about the social network or on approximate
shortest-paths computations. Extensive experiments on real-world
data from Twitter show that our techniques can drastically improve
response time, without sacrificing precision.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search Process

Keywords
social applications; social search; threshold algorithms

⇤Work performed while the authors were affiliated with Institut
Mines-Télécom - Télécom ParisTech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505760.

1. INTRODUCTION
Unprecedented volumes of data are now at everyone’s fingertips

on the Web. The ability to query them effectively, by fast retrieval
and ranking algorithms, has largely contributed to the rapid growth
of the Web, making it irreplaceable in our every day life.

A new dynamics to this development has been recently brought
by the social Web, applications that are centered around users, their
relationships and their data. Indeed, user-generated content is be-
coming a significant and highly qualitative portion of the Web. To
illustrate, one of the two most visited Web sites today is a social one.
This calls for adapted, efficient retrieval techniques, which can go
beyond a classic Web search paradigm where data is decoupled from
the users querying it. An important class of social applications are
the social tagging ones, with popular examples including Delicious,
Flickr, or Twitter. Their general setting is the following:

1. users form a social network, which may reflect proximity,
similarity, friendship, closeness, etc,

2. items from a public pool of items (tweets, documents, URLs)
are tagged by users with keywords (tags, hashtags), for de-
scription, classification, or to facilitate later retrieval,

3. users search for items having certain tags.
Social tagging, and social applications in general, can offer an en-
tirely new perspective to how one searches and accesses information.
The main reason for this is that users can (and often do) play a role at
both ends of the information flow, as producers and also as seekers
of information. Consequently, finding the most relevant items that
are tagged by some keywords should be done in a network-aware
manner. In particular, items that are tagged by users who are “closer”
to the seeker – where the term closer depends on model assumptions
that will be clarified shortly – should be given more weight than
items that are tagged by more distant users.

We consider in this paper the problem of top-k retrieval in social
tagging systems, with a focus on efficiency, targeting techniques
that have the potential to scale to current applications on the Web,
in an online context where the network, the tagging data and even
the seekers’ search ingredients can change at any moment. In this
context, a key sub-problem for top-k retrieval that we need to address
is computing scores of top-k candidates by iterating not only through
the most relevant items with respect to the query, but also (or mostly)
by looking at the closest users and their tagged items.

We associate with the notion of social network a general interpre-
tation: a user graph whose edges are labeled by social scores, which
give a measure of proximity or similarity between users. While we
focus on social tagging in this paper, we believe this represents a
good abstraction for many types of social applications, to which our
techniques could apply.

EXAMPLE 1. Consider the social tagging configuration of Fig-
ure 1 (left). Users have associated lists of tagged documents and

D3: site D2: news
D4: news, site

D4: news
D6: news, site

D1: news
D2: site
D4: news

D1: site
D5: news, site

D1: news
D2: site
D4: news, site D2: news, site

D4: news

D2: site
D4: news, site

D2: site
D3: news
D4: newsAlice

Bob

Charlie

Danny

Eve

Frank

George
Holly

Ida

Jim
0.9

0.6

0.5

0.6

0.9

0.5

0.5

0.5

0.5

0.2

0.25

0.1

Alice

D1

Bob

Danny

Frank

Ida

Jim

Charlie

Eve

0.9
0.6

0.6

0.9

0.5

0.25

0.5

site

news

news

Figure 1: Social tagging scenario and its social network (left);
some paths from a seeker towards a relevant item (right).

they are interconnected by social links. Each link is labeled by its
(social) score, assumed to be in the (0, 1] interval. Let us consider
user Alice in the role of the seeker. The user graph is not a complete
one, as the figure shows, and only two users have an explicit social
score with respect to Alice. For the remaining ones, Danny, . . . , Jim,
only an implicit social score could be computed from the existing
links if a precise measure of their relevance with respect to Alice’s
queries is necessary in the top-k retrieval.

Let us assume that Alice looks for the top two documents that are
tagged with news and site. Looking at Alice’s immediate neighbors
and their respective documents, intuitively, D3 should have a higher
score than D4, since the former is tagged by a more relevant user
(Bob, having the maximal social score relative to Alice). If we
expand the search to the entire graph, e.g., via a shortest paths-like
interpretation, the score of D4 may however benefit from the fact
that other users, such as Eve or even Holly, also tagged it with
news or site. Furthermore, documents such as D2 and D1 may
also be relevant for the top-2 result, even though they were tagged
only by users who are indirectly linked to Alice.

Figure 1 (right) gives a different perspective on our scenario,
illustrating how Alice can reach one of the relevant documents,
D1, by following three paths in the social network. Intuitively, an
aggregation of such paths from a seeker towards data items will be
used in the scoring model. Under certain assumptions to be clarified
shortly, the top-2 documents for Alice’s query will be, in descending
score order, D4 and D2. The rest of the paper will present the
underlying model and algorithms that allow to build this answer.

Main related work. Top-k retrieval algorithms, such as the Thresh-
old Algorithm (TA) and the No Random Access algorithm (NRA)
[12], rely on precomputed inverted-index lists with exact scores
for each query term (in our setting, a term is a tag). Revisiting
the setting in Figure 1, we would have two per-tag inverted lists
IL(news) = {D4 : 7, D2 : 2, D1 : 2, D3 : 1, D6 : 1, D5 : 1}
and IL(site) = {D2 : 5, D4 : 2, D3 : 1, D6 : 1, D1 : 1, D5 :
1}, which give the number of times a document has been tagged
with the given tag.

When user proximity is an additional ingredient in the top-k
retrieval process, a direct network-aware adaptation of the threshold
algorithm and variants would need precomputed inverted list indices
for each user-tag pair. For instance, if we interpret explicit links
in the user graph as friendship, ignoring the link scores, and only
tagging by direct friends matters, Alice’s lists would be
IL

Alice

(news) = {D4 : 1, D6 : 1}, IL
Alice

(site) = {D3 :
1, D6 : 1}. Other 18 such lists would be required; clearly, this
would have prohibitive space and computing costs in real settings.

Amer-Yahia et al. [1] is the first to address this issue, considering
the problem of network-aware search in social tagging sites, though
in a simplified setting. The authors consider an extension to classic
top-k retrieval in which user proximity is seen as a binary function
(0-1 proximity): only a subset of the users in the network are selected
and can influence the top-k result. This introduces two strong
simplifying restrictions: (i) only documents tagged by selected users
should be relevant in the search, and (ii) all the users thus selected
are equally important. The base solution of [1] is to keep for each
tag-item pair, instead of the detailed lists per user-tag pair, only
an upper-bound on the number of taggers: the maximal number
of taggers from any user’s neighborhood. For example, the upper-
bound for (news,D4) would be 2, since for any user there are at
most two neighbors who tagged D4 with news. A more refined
version, which trades space for efficiency, keeps such upper-bounds
for clusters of users, instead of the network as a whole.

Only in Schenkel et al. [19], the network-aware retrieval problem
for social tagging is considered under a general interpretation, the
one we also adopt in this paper. It considers that even users who are
only indirectly connected to the seeker can be relevant for the top-k
result. Their CONTEXTMERGE algorithm follows the intuition that
the users closest to the seeker will contribute more to the score of
an item, thus maximizing the chance that the item will remain in
the final top-k. The authors describe a hybrid approach in which,
at each step, the algorithm chooses either to look at the documents
tagged by the closest unseen user or at the tag-document inverted
lists (a seeker agnostic choice). In order to obtain the next (unseen)
closest user at any given step, the algorithm precomputes in advance
the proximity value for all possible pairs of users. These values are
then stored in ranked lists (one list per user), and a simple pointer
increment allows to obtain the next relevant user.

EXAMPLE 2. In Fig. 1, for seeker Alice, the list of users ranked
by proximity would be {Bob : 0.9, Danny : 0.81, Charlie:0.6,
F rank : 0.4, Eve : 0.3, George : 0.2, Holly : 0.1, Ida : 0.1,
Jim : 0.05}, with proximity between two users built as the maximal
product of scores over paths linking them (formalized in Section 2.1).
For example, the scores of Frank and Eve correspond to paths of
Fig. 1 (right), and will contribute to D1’s score w.r.t. the tag news.

Our contributions. We present an algorithm for top-k answering
in social tagging, which has the potential to scale to current online
applications, where network changes and tagging are frequent. For
it, we first address a key aspect: accessing efficiently the closest
users for a given seeker. We describe how this can be done on the fly
(without pre-computations) for a large family of functions for prox-
imity computation in a social network, including the most natural
ones (as the one used in [19]).

Based on this, our top-k algorithm SNSis sound and complete,
and, when the search relies exclusively on the social weight of tag-
ging actions, it is instance optimal – i.e., it visits a minimal number
of users – in a large and important class of algorithms. Extensive
experiments on real-world data from Twitter show that SNS per-
forms significantly better than state-of-the-art techniques, up to two
times faster (see Sec. 5). Going further, since in real-world online
applications the joint exploration of the social and textual space may
remain costly, even by optimal algorithms, we consider directions
for approximate results. More specifically, these are motivated by
the fact that estimates for termination conditions may be too loose
in practice and that exact shortest paths-like computations may be
too expensive in a large network. Our approaches present the ad-
vantages of negligible memory consumption – relying on concise
statistics and pre-computed information about the social network
and proximity values (via landmarks) – and reduced computation

overhead. Moreover, these statistics can be maintained up to date
with little effort, even when the social network is built based on
tagging history. Experiments show that approximate techniques can
drastically improve the response time of the exact approach, even
by an order of magnitude, with reduced impact on precision.

The main focus of our work is on the social aspects of top-k
retrieval in tagging applications, and our techniques are designed
to perform best in settings where tagging actions are mostly (if not
exclusively) viewed through the lens of social relevance.

Other related work. The topic of search in a social setting has
received increased attention lately. Studies and models of person-
alization of social tagging sites can be found in [20, 13, 11, 21].
Other studies have found that including social knowledge in scoring
models can improve search and recommendation algorithms. In [8],
personalization based on a similarity network is shown to outper-
form other personalization approaches and the non-personalized
social search. A study on a last.fm dataset in [16] has found that
incorporating social knowledge in a graph model system improves
the retrieval recall of music track recommendation algorithms. An
architecture for social data management is given in [2, 3], with
a framework for information discovery and presentation in social
content sites. Another approach to rank resources in social tagging
environments is CubeLSI [6], which uses a vector space model and
extends Latent Semantic Indexing to include taggers in the feature
space of resources, in order to better match queries to documents.

Several approaches for modifying the classic PageRank algo-
rithm for bookmarking applications have been proposed. Algorithm
FolkRank [14] proposes a ranking model in social bookmarking
sites, for recommendation and search, based on an adaptation of
PageRank over the tripartite graph of users, tags and resources. It
follows the intuition that a resource that is tagged with important
tags by important users becomes important itself and, symmetrically,
for tags and users. An alternative approach to social-aware search,
using personalized PageRank, was presented in [5]. There, the same
tripartite model of annotators, resources and annotations is used to
compute measures of similarities between resources and queries,
and to capture the social popularity of resources. However, none
of these approaches incorporate user-to-user relationships in their
ranking model. In contrast, the social network is an integral part of
the scoring model in our setting, if not the decisive one, while it can
have various semantics (e.g., tagging similarity or trust).

The scoring model used in [19] is revisited in [22]. There, a
textual relevance and a social influence score are combined in the
overall scoring of items, the latter being computed as the inverse of
the shortest path between the seeker and the document publishers.
This model is also used in top-k retrieval of spatial web objects [7],
where a prestige-based relevance score is computed by combining
the overall relevance of an object with its spatial distance.

Person search and shortest paths related work gives another facet
of “social search”: the search of highly relevant persons for a given
seeker and keyword query. Generally, the principle of approaches
used in this type of application is to generate the k most relevant
users, filtering them by the query keywords. These most relevant
users are computed based on their shortest-path distances to the
seeker, either in a centralized setting, as in [17], or in a distributed
one, as in [4]. A characterization of proximity functions, including
shortest paths, has also been recently given in [9]. These approaches
are not directly applicable to our problem setting, as we have no
prior knowledge on the identity and number of users who are highly
relevant for the query and the top-k items to be returned. However,
we describe here an adaptation to our setting of [17]’s landmark-
based approach for shortest paths computations, in order to obtain
faster approximate results.

Outline. We formalize in Sec. 2 the top-k retrieval problem in
social tagging. We describe a key aspect of our approach, the on-
the-fly computation of proximity in Sec. 2.1. We then describe our
exact top-k algorithm, first in an exclusively social form, in Sec. 3,
and show it is instance optimal (Sec. 3.1). The general algorithm is
presented in Sec. 3.2. Approaches for improving efficiency by ap-
proximation are given in Sec. 4. Experimental results are presented
in Sec. 5. and we discuss future research directions in Sec. 6.

2. NETWORK-AWARE TOP-K RETRIEVAL
In short, our model relies on scores that are obtained, either fully

or partially, by some aggregation of shortest paths (in the social
space) from a seeker towards good items (as illustrated in Figure 1,
right).

More precisely, we consider a social setting in which we have a
set of items (could be text documents, tweets, URLs, photos, etc)
I = {i1, . . . , im}, each tagged with one or more distinct tags from
a dictionary T = {t1, t2, . . . , tl} by users from U = {u1, . . . , un

}.
We assume that users form an undirected weighted graph G =
(U , E,�) called the social network. In G, nodes represent users and
the � function associates to each edge e = (u1, u2) a value in (0, 1],
called the proximity (or social) score between u1 and u2.

Given a seeker user s, a keyword query Q = (t1, ..., tr) (a set of
r distinct tags) and an integer value k, the top-k retrieval problem
is to compute the (possibly ranked) list of the k items having the
highest scores with respect to the seeker and query.

We assume the following tagging relation Tagged(v, i, t), which
says that a user v tagged the item i with tag t (a user can tag a given
item with a given tag at most once).

We first model by score(i | s, t), for a seeker s, an item i and
one tag t, the score of i for the given seeker and tag. Generally,
score(i | s, t) = h(fr(i | s, t)), where fr(i | s, t) is the overall
frequency of item i w.r.t s and t, and h is a positive monotone
function (e.g., tf-idf or BM25; see Section 5).

Overall frequency fr(i | s, t) is defined as a combination of a
network-dependent component and a document-dependent one:

fr(i | s, t) = ↵⇥ tf(t, i) + (1� ↵)⇥ sf(i | s, t). (2.1)

The former component, tf(t, i), is the term frequency of t in i,
i.e., the number of times i was tagged with t. The latter component
stands for social frequency, a measure that depends on the seeker.1

If we consider that each user brings her own weight (proximity)
to an item’s score, we can define the measure of social frequency as

sf(i | s, t) =
X

v2{v | Tagged(v,i,t))}

�(s, v). (2.2)

Then, given a query Q as a set of tags (t1, . . . , tr), the overall score
of i for seeker s and query Q,

score(i | s,Q) = g(score(i | s, t1), . . . , score(i | s, tr)),
is obtained using a monotone aggregate function g over the individ-
ual scores for each tag (in our experiments, the aggregation function
g is assumed to be a summation, giving

P
tj2Q

score(i | s, t
j

)).
Extended proximity. The above scoring model takes into ac-

count only the neighborhood of the seeker (the users directly con-
nected to her). But this can be extended to deal also with users that
are indirectly connected to the seeker, following a natural interpre-
tation that user links (e.g., similarity or trust) are (at least to some
extent) transitive. We denote by �+ an extended proximity, which is
1The kind of linear combination of Eq. (2.1) is often used when a
local retrieval score and a global one are to be combined, e.g., in
spatial search [7] or in social search [19]; any monotone combination
of the two score components can be used instead.

to be computable from � for any pair of users connected by a path
in the network. Now, �+ can replace � in the definition of social
frequency we consider before (Eq. (2.2)), yielding an overall item
scoring scheme that depends on the entire network instead of only
the seeker’s vicinity. We discuss shortly possible alternatives for
�+ by means of aggregating � values along paths in the graph. In
the rest of this paper, when we talk about proximity, we refer to
the extended one. For a given seeker u, by her proximity vector we
denote the list of users with non-zero proximity with respect to u,
ordered in descending order of these proximity values.

2.1 Computing �+

We describe in this section a key aspect of our algorithm for top-k
search, namely on-the-fly computation of proximity values with
respect to a seeker s. The issue here is to facilitate at any given
step the retrieval of the most relevant unseen user u in the network,
along with her proximity value �+(s, u). This user will have the
potential to contribute the most to the partial scores of items that are
still candidates for the top-k result, by Eq. (2.1) and (2.2).

We start by discussing possible candidates for �+, arguably the
most natural ones, drawing inspiration from studies in the area
of trust propagation for belief statements. We then give a wider
characterization for the family of possible functions for proximity
computation, to which these candidates belong.

Candidate 1(f
mul

). Experiments on trust propagation in the
Epinions network (for computing a final belief in a statement) [18]
or in P2P networks show that (i) multiplying the weights on a given
path between u and v, and (ii) choosing the maximum value over
all the possible paths, gives the best results (measured in terms of
precision and recall) for predicting beliefs. We can integrate this
into our scenario, by assuming that belief refers to tagging with a
tag t. We thus aggregate the weights on a path p = (u1, . . . , ul

)
(with a slight abuse of notation) as �+(p) =

Q
i

�(u
i

, u
i+1).

For seeker Alice in our running example, we gave in the previous
section (Example 2) the proximity values and the ordering of the
network under this candidate for �+.

Candidate 2(f
min

). A possible drawback of Candidate 1 for
proximity aggregation is that values may decrease quite rapidly. A
�+ function that avoids this could be obtained by replacing multipli-
cation over a path with minimal, as �+(p) = min

i

{�(u
i

, u
i+1)}.

Under this �+ candidate, the values w.r.t. seeker Alice would
be {Bob : 0.9, Danny : 0.9, Charlie : 0.6, F rank : 0.6, Eve :
0.5, George : 0.5, Holly : 0.5, Ida : 0.25, Jim : 0.25}.

Candidate 3(f
pow

). Another possible definition for �+ relies
on an aggregation that penalizes long paths, i.e., distant users, in a

controllable way, as �+(p) = �
�

P
i

1
�(ui,ui+1) , where � � 1 can

be seen as an exponential decay factor; the greater its value the more
rapid the decrease of proximity.2 Under this candidate, for � = 2,
non-zero rounded values w.r.t Alice are {Bob : 0.46, Charlie :
0.31, Danny : 0.21, Eve : 0.07, F rank : 0.052, George : 0.01}.

The key common feature of the candidate functions previously
discussed is that they are monotonically non-increasing over any
path, when � draws values from the interval [0, 1]:

PROPERTY 1. For a social network G and a path p = {u1, . . . , ul

}
in G, we have �+(u1, . . . , ul

) �+(u1, . . . , ul�1).

We then define �+ for any pair of users (s, u) who are connected
in the network by taking the maximal weight over all their connect-
ing paths. More formally, we define �+(s, u) as

�+(s, u) = max
p

{�+(p) | s p

; u}. (2.3)

2This is similar to Katz measures for social proximity [15].

Note that when the first candidate (multiplication) is used, we ob-
tain the same aggregation scheme as in [18], which is also employed
in [19] in the context of top-k network aware search.

EXAMPLE 3. In our running example, if we use multiplication
in Eq. (2.3), for the seeker Alice, for ↵ = 0 (hence exclusively
social relevance), by Eq.(2.1) we obtain the following values for
social frequency: SF

Alice

(news) = {D4 : 2.6, D2 : 1.01, D1 :
0.7, D6 : 0.6, D3 : 0.1, D5 : 0.05} and SF

Alice

(site) = {D4 :
1.11, D2 : 1.1, D3 : 0.9, D6 : 0.6, D1 : 0.05, D5 : 0.05}.

We argue next that to all aggregation definitions that satisfy Prop-
erty 1 and apply Eq.(2.3), a greedy approach is applicable. This will
allow us to browse the network of users on the fly, at query time,
visiting them in the order of their proximity w.r.t the seeker.

More precisely, by generalizing Dijkstra’s shortest paths algo-
rithm [10], we maintain a max-priority queue, denoted H , whose
top element score top(H) will correspond at any moment to the
most relevant unvisited user. A user is visited when her tagged
items are taken into account for the top-k result, as described in
the following sections (this can occur at most once). At each step
advancing in the network, the top of the queue is extracted (vis-
ited) and its unvisited neighbors (adjacent nodes) are added to the
queue (if not already present) and are relaxed. Let ⌦ denote the
aggregation function over a path (satisfying Property 1).

It can be shown by straightforward induction that this greedy ap-
proach allows us to visit the nodes of the network in non-increasing
order of their proximity with respect to the seeker, under any func-
tion for proximity aggregation that satisfies Property 1.

3. THE EXACT TOP-K ALGORITHM
As the main focus of this paper is on the social aspects of search

in tagging systems, we detail first our top-k algorithm, SNS, for the
special case when the parameter ↵ is 0. In this case, fr(i | s, t) is
simplified as fr(i | s, t) = sf(i | s, t).

For each user u and tag t, we assume a precomputed projection
over the Tagged relation for them, giving the items tagged by u with
t; we call these the user lists. No particular order is assumed for the
items appearing in a user list. We keep a list D of candidate items,
sorted in descending order by their minimal possible scores (to be
defined shortly). An item becomes candidate when it is first met in
a Tagged triple.

As usual, we assume that, for each tag t, we have an inverted
list IL(t) giving the items i tagged by it, along with their term
frequencies tf(t, i)3, in descending order. The lists can be
seen as unpersonalized indices; starting from the top item, they will
be consumed one item at a time, whenever the current item becomes
candidate for the top-k result. We denote by CIL(t) the items alrea-
dy consumed (as known candidates), by top_item(t) the item
present at the current (unconsumed) position of IL(t), and we
use top_tf(t) as short notation for the term frequency associated
with this item.

We detail mostly the computation of social frequency, sf(i | u, t),
as it is the key parameter in the scoring function of items. Since
when ↵ = 0 we do not use metrics that are tag-only dependent, it is
not necessary to treat each tag of the query as a distinct dimension
and to visit each in round-robin style (as done in the threshold
algorithm or in CONTEXTMERGE). It suffices for our purposes to
get at each step, for the currently visited user, all the items that were
tagged by her with query terms (one user list for each term).
3Even though the social frequency does not depend directly on tf
scores, we will exploit the inverted lists and the tf scores by which
they are ordered, to better estimate score bounds. In particular, as
detailed later, this allows us to achieve instance optimality.

For each tag t
j

2 Q, by unseen_users(i, t
j

) we denote the
maximal number of yet unvisited users who may have tagged item i
with t

j

. This is initially set to the maximal possible term frequency
of t

j

over all items (value that is available at the current position of
the inverted list of IL(t

j

), as top_tf(t)).
Each time we visit a user u who tagged item i with t

j

we can (a)
update sf(i | s, t

j

) (initially set to 0) by adding �+(s, u) to it, and
(b) decrement unseen_users(i, t

j

).
When unseen_users(i, t

i

) reaches 0, the social frequency value
sf(i | s, t

j

) is final. This also gives us a possible termination
condition, as discussed in the following.

At any moment in the run of the algorithm, the optimistic score
MAXSCORE(i | s,Q) of an item i that has already been seen in some
user list is estimated using as social frequency, for each tag t

j

of the
query, the value top(H)⇥ unseen_users(i, t

j

) + sf(i | s, t
j

).
Symmetrically, the pessimistic overall score, MINSCORE(i | s,Q),

is estimated by the assumption that, for each tag t
j

, the current social
frequency sf(i | s, t

j

) will be the final one. The list of candidates
D is sorted in descending order by this lowest possible score.

An upper-bound score on the yet unseen items, MAXSCOREUN-
SEEN is estimated using as social frequency for each tag t

j

the value
top(H)⇥ top_tf(t)).

When the optimistic scores of items already in D but not in its
top-k are less than the pessimistic score of the last item in the current
top-k (i.e., D[k]), the algorithm can terminate; we are guaranteed
that the top-k can no longer change. (Note however that at this point
the top-k items may have only partial scores and, if a ranked answer
is needed, the process of visiting users should continue.)

Algorithm 1 gives the flow of SNS. Key differences w.r.t. CON-
TEXTMERGE’s social branch are (i) the on-the-fly computation of
proximity values, in lines 1-7 and 29-31, and (ii) the consuming of
inverted list positions, when they become candidates, in lines 20-28.
For clarity, we first exemplify a SNS run without the latter aspect
(this would correspond to a CONTEXTMERGE run).

EXAMPLE 4. Revisiting Example 1, recall we want the top-2
items for the query Q = {news, site} from Alice’s point of view.
To simplify, let us assume that score(i | u, t) = sf(i | u, t) and g
is addition. We detail next the execution of our algorithm.

At the first iteration of the line 8 loop, we visit Bob’s user list,
adding D3 to the candidate buffer. At the second iteration, we
visit Danny’s user list, adding D2, D4 to the buffer. At the third
iteration (Carol’s user list) we add D6 to the buffer. D1 is added
to the candidate buffer when the algorithm visits Frank’s user lists,
at iteration 4. Recall top_tf(news) = 7 and top_tf(site) = 5.

The 6th iteration of the algorithm is the final one, visiting George’s
user lists, finding D2 tagged with news, site and D4 tagged with
site. D4 and D2 are the top-2 candidates, with MINSCORE(D4, Q)
= 2.61 and MINSCORE(D2, Q) = 2.21. The closest candidate
is D6, with MINSCORE(D6, Q) = 1.2 and MAXSCORE(D6, Q)
= 1.2 + 6⇥ 0.1 + 4⇥ 0.1 = 2.2. Also, MAXSCOREUNSEEN(Q)
= 7 ⇥ 0.1 + 5 ⇥ 0.1 = 1.2. Finally, MAXSCORE(D6, Q) <
MINSCORE(D2, Q) and since we have MAXSCOREUNSEEN(Q) <
MINSCORE(D2, Q), the algorithm stops returning D4 and D2.

We discuss next the interest of consuming the inverted list po-
sitions, when these become candidates (illustrated in Example 5).
In lines 20-28, we aim at keeping to a minimum the worst-case
estimation of the number of unseen taggers. More precisely, we test
whether there are top-k candidates i (i.e., items already seen in user
lists) for which the term frequency for some tag t

j

of Q, tf(t
j

, i), is
“within reach”, as the one currently used (from IL(t

j

)) as the basis
for the optimistic (maximal) estimate of the number of yet unseen
users who tagged candidate items with t

j

. When such a pair (i, t
j

)
is found, we can do the following adjustments:

1. refine the number of unseen users who tagged i with t
j

from
a (possibly loose) estimate to its exact value; this is marked
when i is added to the CIL list of t

j

(line 24) and, from this
point on, the number of unseen users will only change when
new users who tagged i with t

j

are found (line 18).
2. advance (one sequential access) beyond i in IL(t

j

) to the
next best item, allowing to refine (at line 25) the estimates
unseen_users(i0, t

j

) for all candidates i0 for which the ex-
act number of users who tagged with t

j

is yet unknown.

Algorithm 1: SNS
↵=0: top-k algorithm for ↵ = 0

Require: seeker s, query Q = (t1, . . . , tr)
1: for all users u, tags t

j

2 Q, items i do
2: �+

(s, u) = �1
3: sf(i | s, t

j

) = 0

4: set IL(t
j

) position on first entry; CIL(t
j

) = ;
5: end for
6: �+

(s, s) = 0; D = ; (candidate items)
7: H priority queue over nodes u, sorted by �+

(s, u)); initially {s}
8: while H 6= ; do
9: u=EXTRACT_MAX(H);

10: for all tags t
j

2 Q, triples Tagged(u, i, t
j

) do
11: sf(i | s, t

j

) sf(i | s, t
j

) + �+
(s, u)

12: if i 62 D then
13: add i to D
14: for all tags t

l

2 Q do
15: unseen_users(i, t

l

) top_tf(t
l

)(initialization)
16: end for
17: end if
18: unseen_users(i, t

j

) unseen_users(i, t
j

)� 1

19: end for
20: while 9t

j

2 Q s.t. i = top_item(t
j

) 2 D do
21: tf(t

j

, i) top_tf(t
j

)(t
j

’s frequency in i is now known)
22: advance IL(t

j

) one position
23: � tf(t

j

, i)� top_tf(t
j

) (the top_tf drop)
24: add i to CIL(t

j

)

25: for all items i0 2 D \ CIL(t
j

) do
26: unseen_users(i0, t

j

) unseen_users(i0, t
j

)��

27: end for
28: end while
29: for all users v s.t. �(u, v) 2 E do
30: add v to H (if necessary) and RELAX(s,u,v)
31: end for
32: if MINSCORE(D[k], Q) > max

l>k

(MAXSCORE(D[l], Q))

AND MINSCORE(D[k], Q) > MAXSCOREUNSEEN then
33: break
34: end if
35: end while
36: return D[1], . . . , D[k]

EXAMPLE 5. Let us now consider how the choice of advancing
in the inverted lists, when possible, influences the number of needed
iterations. At first, top_tf(news) = 7, top_item(news) = D4,
and top_tf(site) = 5, top_item(site) = D2.

The first iteration only introduces D3 and we cannot advance in
any of the two inverted lists. Then, the discovery of D2 and D4 in
step 2 allows us to fix their exact tf values and advance in the lists.
The new positions are: top_tf(news)=2, top_item(news)=D1,
and top_tf(site)=1, top_item(site)=D6. D6’s discovery in the
3rd iteration allows us to advance further in the inverted lists. Fi-
nally, in step 4, the discovery of D1 allows us to advance in the
inverted lists to top_tf(news) = 1, top_item(news) = D5,
and top_tf(site) = 1, top_item(site) = D5 (only undiscov-
ered item). This allows for some drastic score estimation refine-
ments. We have the same top-2 candidates, D4 and D2, with
MINSCORE(D4, Q) = 1.81, MINSCORE(D2, Q) = 1.21. Clos-
est item remains D6, by MINSCORE(D6, Q) = MAXSCORE(D6,
Q) = 1.2, since we know that we have visited all users who tagged

D6. MAXSCOREUNSEEN(Q) = 1 ⇥ 0.3 + 1 ⇥ 0.3 = 0.6, since
the top unseen document could be tagged only once with each tag.
Then, since MAXSCOREUNSEEN(Q) < MINSCORE(D2, Q) and
MAXSCORE(D6, Q) < MINSCORE(D2, Q) we can exit the loop,
two steps before the unrefined version, with D4, D2 as the top 2.

We can prove the following property of our algorithm:

PROPERTY 2. For a given seeker s, SNS
↵=0 visits the network

in decreasing order of the �+ values with respect to s.

As a corollary of Property 2, we have that SNS
↵=0 visits users

who may be relevant for the query in the same order as the state-
of-the-art algorithm of [19]. More importantly, we prove that our
algorithm visits as few users as possible, i.e., it is instance optimal
with respect to this aspect when ↵ = 0. Moreover, the experiments
show that overall SNS can drastically reduce the number of visited
user lists in practice (see Section 5).

3.1 Instance optimality of SNS↵=0

We use the definition of instance optimality of [12]. For a class
of algorithms A, a class of legal inputs (instances) D, cost(A,D)
denotes the cost of running algorithm A 2 A on input D 2 D. An
algorithm A is instance optimal for its class A over inputs D if for ev-
ery B 2 A and every D 2 D we have cost(A,D)=O(cost(B,D)).

Let c
UL

be the abstract cost of accessing the user list - a process
which involves the relatively costly operations of finding the prox-
imity value of the user and retrieving the items tagged by the user
with query terms - and let users(A,D) be the number of user lists
needed for establishing the top-k for algorithm A on input D. Let
c
S

be the abstract cost of sequentially accessing the data in IL
t

,
and let seqitems(A,D) be the total number of sequential accesses
to IL for algorithm A on input D. In practice, c

UL

� c
S

is a
reasonable assumption, hence, for two algorithms A and B, we have

users(A,D)⇥ c
UL

+ seqitems(A,D)⇥ c
S

users(B,D)⇥ c
UL

+ seqitems(B,D)⇥ c
S

⇡ users(A,D)
users(B,D)

.

Hence, for a fair cost estimate in practical social search settings, a
reasonable assumption is to consider cost(A,D) = users(A,D).

Let us now define the class of “social” algorithms S to which
both SNS

↵=0 and CONTEXTMERGE (when ↵ = 0) belong. These
algorithms correctly return the top-k items for a given query Q
and seeker s, they do not use random accesses to IL(t) indexes in
order to fetch a certain tf value, and they do not include in their
working buffers (e.g., candidate buffer D) items that were not yet
encountered in the user lists. The last assumption could be seen
as a “no wild guess” policy, by which the algorithm cannot guess
that an item might be encountered in some later stages. This is a
reasonable assumption in practice, as the number of items needed
for computing a top-k result for a given seeker should in general be
much smaller than the total number of items tagged by query terms.

The class D of accepted inputs consists of the inputs that respect
the setting described in Section 2. We can prove the following result:

THEOREM 1. SNS
↵=0 is instance optimal over S and D, when

the cost is defined as cost(A,D) = users(A,D).

3.2 Algorithm for the general case
For the general case of ↵ 2 [0, 1] – with the on-the-fly processing

of user proximities – at each iteration, the algorithm can alternate,
by calling CHOOSEBRANCH(), between two possible execution
branches: the social branch (lines 8-31 of Algorithm 1) and the
textual branch, which is a direct adaptation of the NRA algorithm.

As in the exclusively social setting of the previous section, we
read tf-scores tf(t

j

, i) from the inverted lists, when needed, either

as in line 21 of SNS
↵=0, or when advancing in the textual branch.

Initially, all unknown tf-scores are assumed to be set to 0.
The optimistic overall score MAXSCORE(i, Q) of an item i that

is already in the candidate list D will now be computed by setting
fr(i | s, t), defined in Eq. (2.1), to

fr(i | s, t) = (1� ↵)⇥ top(H)⇥ unseen_users(i, t) +
(1� ↵)⇥ sf(i | s, t) + ↵⇥max(tf(t, i), top_tf(t)).

The last term accounts for the textual weight of the score, and uses
either the exact term frequency (if known), or an upper-bound for it
(the score in the current position of IL(t)).

Symmetrically, for the pessimistic overall score MINSCORE(i, Q),
the frequency fr(i | u, t) will be computed as

fr(i|s, t) = (1�↵)⇥sf(i|s, t)+↵⇥max(tf(t, i), partial_tf(t)),

where partial_tf is the count of visited users who tagged i with t
j

,
and is used as lower-bound for tf(t

j

, i) when this is not yet known.
A score upper-bound for yet unseen items, MAXSCOREUNSEEN,

is estimated using as overall frequency for each tag t
j

the value
fr(i | s, t) = ↵⇥ top_tf(t)+ (1�↵)⇥ top(H)⇥ top_tf(t)).
We present the flow of the general case algorithm in Algorithm 2.

Method INITIALIZE() amounts to lines 1-6 of SNS
↵=0, and method

PROCESSSOCIAL() amounts to lines 8-31 of SNS
↵=0 (modulo the

straightforward adjustment for the count partial_tf).
The difference between the ↵ = 0 case and the general case is

the processing of the inverted lists (textual branch), which is done
as in the No Random Access algorithm (NRA) [12] (see lines 7-13
of Algorithm 2). We discuss how the choice of the branch to be
followed is done, by the CHOOSEBRANCH() subroutine hereafter.

Algorithm 2: SNS: top-k algorithm for the general case
Require: seeker s, query Q = (t1, . . . , tr)
1: INITIALIZE()
2: while H 6= ; do
3: CHOOSEBRANCH()
4: if social branch then
5: PROCESSSOCIAL()
6: else
7: for all tags t

j

2 Q, item i = top_item(t
j

) do
8: if i 62 D then
9: add i to D and CIL(t

j

)

10: end if
11: tf(t

j

, i) top_tf(t
j

)

12: advance IL(t
j

) one position
13: end for
14: end if
15: if MINSCORE(D[k], Q) > max

l>k

(MAXSCORE(d[l], Q) and
MINSCORE(D[k], Q) > MAXSCOREUNSEEN then

16: break
17: end if
18: end while
19: return D[1], . . . , D[k]

Choice between social and textual branches. SNS
↵=0 (when

only the social branch matters) is instance optimal (Th. 1), with the
cost being estimated as users(SNS

↵=0,D). As the NRA algo-
rithm, when only the textual branch matters, SNS

↵=1 is instance
optimal, with the cost being estimated as seqitems(SNS

↵=0,D).
When ↵ is not one of the extreme values, under a cost function as

a combination of the two above, of the form
users(SNS

↵=0,D)⇥ c
UL

+ seqitems(SNS
↵=1,D)⇥ c

S

,

a key role for efficiency is played by CHOOSEBRANCH().
In [19], the choice between the textual branch or the social one

was done by estimating the maximum potential score of each, in
round-robin manner over the query dimensions. We use a different

– potentially more efficient – heuristic for the branch choice. At any
point in the run of SNS, unless termination is reached, we have at
least one item r with MAXSCORE(r,Q) > MINSCORE(D[k], Q).
We consider the item r = D[argmax

l>k

(MAXSCORE(D[l], Q)],
which has the highest potential score, and we choose the branch that
is the most likely to refine r’s score (put otherwise, the branch that
counts the most in the MAXSCORE estimation for r). The intuition
behind this branch choice mechanism is that it is more likely to
advance the run of the algorithm closer to termination.

For each tag t
j

2 Q, we set MAXTEXTUAL(t
j

) to ↵⇥ top
t

f(t
j

)
if the term frequency tf(t

j

, r) is not yet known, or to 0 otherwise.
For the social part of the score, we set
MAXSOCIAL(t

j

) = (1� ↵)⇥ unseen_users(t
j

, r)⇥ top(H).
Then, we follow the social branch if, for at least one of the tags,

MAXSOCIAL is greater than MAXTEXTUAL. Note that we deal
with the tags of the query “in bulk”, and advance simultaneously on
their inverted lists when the textual branch is followed.

4. EFFICIENCY BY APPROXIMATION
The algorithm described in Section 3 is sound and complete, and

requires no prior (aggregated) knowledge on the proximity values
with respect to a certain seeker (e.g., statistics); this was also the
assumption in [19]’s CONTEXTMERGE algorithm. Moreover, it is
instance optimal in the exclusively social setting (one main focus
of this paper) with respect to the number of visited users. While
we improve the running time in both this setting and the general
one (more on experiments in Section 5), in practice, however, two
aspects can have a significant impact on efficiency:

Reason 1. The search may still visit a significant part of the
network and users’ item lists, before being able to conclude that
the top-k answer is final. Yet we observed that, in most practical
cases, the last top-k change occurs much sooner, so there is a clear
opportunity to stop the browsing of the network earlier. For that, we
can adopt tighter yet approximate worst score or best score bounds –
to be used in Algorithm 1’s line 32 – based on statistics about the
proximity vectors.

Reason 2. The on-the-fly exploration of the social network in
decreasing order of proximity may still place a significant execution
overhead on query processors, even when relying on efficient max-
priority queue structures. As our instance optimality result indicates,
this is unavoidable in cases where exact computations are required.
However, if approximate results are accepted, we can speed-up
this step by techniques that yield approximate proximity values –
replacing line 9 of Algorithm 1 – and visit the network accordingly.

Approximate score bounds and proximity scores may obviously
lead to approximate final results. The techniques we present here
provide a good trade-off between accuracy drop on one hand, and
speed-up and the amount of necessary storage, on the other hand.
We detail next our approaches for the two outlined directions.

4.1 Tighter score bounds estimations
In Algorithm 2, the MAXSCORE, MAXSCOREUNSEEN and MIN-

SCORE bounds have all used the safest possible values for the prox-
imities of yet unseen users: either the top (maximum) value of the
max-priority queue (top(H)) for the first two bounds, or its minimal
possible value (zero) for the third one. In practice, however, any of
these extreme configurations is rarely met, and values in proximity
vectors fall rapidly in many real-world networks.

Hence one possible direction for reducing the number of visited
users is to pre-compute and materialize a high-level description
of users’ proximity vectors. This would allow us to use a tighter
estimation for the remaining (unseen) users, instead of uniformly
associating them the extreme score (top(H) or 0).

Estimating bounds by mean and variance. We first con-
sider as a proximity vector description one that is very concise yet
generally-applicable and effective, keeping for a given seeker two
parameters: the mean value of the proximities in the vector and the
variance of these values. We adopt here the simplifying assumption
that the values in any seeker’s proximity vector are independent,
essentially interpreting proximity vectors as random ones.

At any step in the algorithm’s run, using mean and variance, for
the remaining (unvisited) unseen_users(i, t) for a given item i and
tag t 2 Q, we can derive (a) lower bounds for the average of their
proximity values, for MINSCORE estimates, or (b) upper bounds
for the average of proximity values, for MAXSCORE estimates. The
guarantees of these bounds can be controlled in a probabilistic sense
by a precision parameter � 2 (0, 1], by which lower values lead to
higher precision and 1 leads to absence of guarantees.

More precisely, let p be the current position in the proximity
vector and let �+

p:(s) be the vector containing the remaining (unseen)
values of �+(s). Knowing the overall mean and variance of the
entire proximity vector �+(s), and having the proximity values
seen so far (denoted �+

0:p(s)), we can easily compute the mean and
variance of the remaining proximity values (those in �+

p:(s)).
The mean and variance of unseen_users(i, t) randomly chosen

proximity values from the remaining ones can be obtained – under
an independence assumption – as follows:

Exp[�+
p:, unseen_users(i, t)] = E[�+

p:],

V ar[�+
p:, unseen_users(i, t)] =

V ar[�+
p:]

unseen_users(i, t)
.

When the input query contains several tags, its size |Q| needs to
be taken into account in estimations. In order to avoid computational
overhead, we uniformly chose a non-optimal per-tag probabilistic
parameter �0 that ignores per-tag score distributions, as

�0 = 1� (1� �)1/|Q|. (4.1)
ESTMAX(p, �) represents, for each query tag, the upper bound

of the expected value of the average of unseen_users(i, t) values
drawn from �+

p:(s), which holds with probability at least 1 � �0.
Similarly, ESTMIN(p, �) represents the lower bound of the expected
value of the average of unseen_users(i, t) values drawn from
�+
p:(s), which holds with probability at least 1� �0. For estimating

MINSCORE when i 62 CIL(t), having no information about the
difference between tf(i, t) and partial_tf(t, i) (the users who
tagged item i with t so far) means that we cannot assume that other
users may have tagged i, so we keep this estimation as in the initial
(exact) algorithm. By Chebyshev’s inequality, these bounds are

ESTMAX(p, �) = E[�+
p:(s)] +

s
V ar[�+

p:(s)]

unseen_users(i, t)⇥ �0

ESTMIN(p, �) = E[�+
p:(s)]�

s
V ar[�+

p:(s)]

unseen_users(i, t)⇥ �0

Estimating bounds using histograms. The advantage of the
approach described previously is twofold: low memory require-
ments and estimated bounds that are applicable for any proximity
distribution. However, it may still offer bounds that are too loose in
practice, and hence not achieve the full efficiency potential of ap-
proximate score bounds.. To address this issue, we can imagine, as a
compromise between keeping only these two statistics and keeping
the entire pre-computed proximity vector, an approach in which we
describe the distribution at a finer granularity, based on histograms.

More precisely, for seeker s, we denote this histogram as h(�+(s)).
It consists of b buckets, and each bucket b

i

, for i 2 {1, . . . , b}, has
n
i

items in the interval (low
i

, high
i

] (the 0 values are assigned to

bucket b). Then, the probability that there exists a proximity value
x greater than low

i

, knowing the histogram h(�+(s)), is

Pr[x > low
i

| h(�+(s))] =
iX

j=1

n
j

/n.

At any step p in the run of the algorithm, we maintain a partial his-
togram denoted as h(�+

p:(s)), obtained by removing from h(�+(s))
the p already encountered proximity values.

Similar to the previous approach, we can drill down the overall �
parameter to a �0 one for each query tag. Then, ESTMAX(p, �) can
be given by the minimal value in the partial histogram, such that the
resulting estimation of MAXSCORE(i, t) holds with at least proba-
bility 1 � �0. Conversely, ESTMIN(p, �) is given by the maximal
value in the partial histogram, such that the resulting estimation of
MINSCORE(i, t) holds with at least probability 1� �0.

In manner similar to Eq.(4.1), we need to account for the fact that
some unseen_users(i, t) such estimated values lead to an overall
approximate estimation, for both ESTMIN and ESTMAX. So each
of these values is uniformly estimated using a stronger probabilistic
parameter �00(i, t), depending on unseen_users(i, t), as

�00(i, t) = 1� (1� �00)1/unseen_users(i,t),

and hence we can estimate ESTMAX(p, �) and ESTMIN(p, �).
The space needed for keeping such histograms is linear in the

number of users and buckets. For example, by setting the latter using
the square-root choice, the memory needed is O(n

3
2). Also, as a

consequence of the on-the-fly computation of proximity values, we
can easily update the histogram of the seeker by merging the partial,
“fresh” histogram obtained in the current run (until termination) with
the remaining values from the pre-computed histogram.

4.2 Computing approximate user proximities
We present in this section our approach for the second approx-

imate direction, by computing proximity values in approximate,
efficient manner. For this, we adapt the landmark-based approach
of Potamias et al. [17], which studies fast and accurate estimations
of shortest paths in large graphs.

The principle of the approach is the following. Given a set L of
nodes, called landmarks, we compute their proximity vectors (i.e.,
proximity w.r.t. all other nodes of the network). The number of
landmarks can be considered to be a small constant, not depending
on the network size (10 in our experiments). Then, for a given
seeker s, by knowing her proximity values �+(s, l

i

) to each of the
landmarks, we can use the triangle inequality to compute upper
and lower bounds on the distance between s and any other node v,
�+(s, v). For instance, when path multiplication is used to compute
proximity, these bounds can be obtained as follows:

min(
�+(s, l

i

)
�+(l

i

, v)
,
�+(l

i

, v)
�(s, l

i

)
) � �+(s, v) � �+(s, l

i

)⇥ �+(l
i

, v).

(Similar bounds can be obtained for any proximity computation
function verifying Property 1.) The tightest proximity interval for v
is then given by the minimal upper bound value over all landmarks
and the maximal lower bound value over all landmarks.

Algorithm 3: GETMAXLANDMARKS(s,L, {h1, . . . , h|L|})
Require: seeker s, landmarks L, vectors head pointers {h1, . . . , h|L|}
1: i argmax{�+

(l
i

, h
i

) | l
i

2 L, 1 i |L|}
2: u = h

i

3: advance pointer h
i

in l
i

’s list
4: �+

(s, u) = max{�+
(s, l

j

)⇥ �+
(l
j

, u) | l
j

2 L, 1 j |L|}
5: maxUB = max{�+

(s, l
k

)⇥ �+
(l
k

, h
k

) | l
k

2 L, 1 k |L|}
6: return u

We detail the computation of the next closest user in Algorithm 3,
which replaces line 9 of Algorithm 1. We keep the |L| vectors

Table 1: Comparison between algorithms, ↵ = 0.
Network CMERGE SNS SNS/H SNS/L

users CIL users CIL users CIL users CIL

tag 89k 0 88k 21 63k 8 29k 7
item 264k 0 185k 59 102k 24 212k 63

item-tag 240k 0 155k 39 104k 19 160k 47

ordered descending by the proximity scores. Let h
i

denote the
current (unvisited) user at the head of l

i

’s list. Then, at each step,
we consider the unvisited user u having the highest proximity value
among all the landmarks’ proximity vectors. We advance the pointer
in the respective vector, and then random-access u’s score in each of
the other landmarks’ proximity vectors, obtaining �+(s, u) as the
maximal proximity upper bound. The proximity upper bound for yet
unvisited users, maxUB (to be used in the score estimations of line
32 in Algorithm 1, instead of top(H)) is obtained by computing the
maximal distance from the seeker to any of the unvisited users; by
monotonicity, it suffices to only look at the values at the heads of the
|L| vectors. This operation is equivalent to one loop of the Threshold
Algorithm (TA) [12], using the function max as aggregation.

5. EXPERIMENTAL EVALUATION

Dataset. In Twitter, a highly popular microblogging and social
tagging application, one broadcasts to followers short messages
(tweets). One can also re-broadcast incoming tweets from followees
(re-tweets); when doing so, the re-tweet may be tagged with certain
tags or short descriptions (hashtags). So we can see a tweet and its
re-tweeted instances as representing one data item, which may be
tagged with various tags by the users broadcasting it. This data can
thus be modeled naturally as triples (user, item, tag). Our dataset
comes from a collection of tweets obtained via the public Twitter
Streaming API. From the initial stream of tweets, we filtered out
those that were never re-tweeted. Then, from the resulting set of
triples, we filtered out those corresponding to (i) items not tagged
by at least 2 distinct users, or (ii) users who did not tag at least 2
distinct items.

From this collection of triples, we generated three user similarity
networks, in which the proximity between two users is given the
Dice coefficient of either (i) the sets of tags used by those users (a
tag similarity network), (ii) the sets of items tagged by those users
(an item similarity network), or (iii) the sets of item-tag pairs of
those users (an item-tag similarity network). The properties of this
dataset and its similarity networks are as follows (as expected, all
networks have long tail degree distributions and low diameter):

• 570,387 users; 1,570,866 items; 305,361 tags; 8,753,706
(u, i, t) triples.

• 10.10 distinct items per user; 1.39 distinct tags per item; 9.45
distinct tags per user.

• 324.1average degree (tag); 52.2 average degree (item); 52.6
average degree (item-tag).

• 0.41 average proximity (tag); 0.18 average proximity (item);
0.19 average proximity (item-tag).

Setup. We generated 20 top-10 queries, formed by 2 or 3 seman-
tically coherent tags, from those having a medium frequency. For
each network, 10 users were also randomly chosen in the seeker’s
role.

In the score model, the aggregation function g was sum. For the
ranking function (the h-function), we used either the standard tf-idf:
score(i | u, t) = fr(i | u, t)⇥ idf(t), or BM15 as in [19]:

00.10.20.30.40.5
0

0.5

1

1.5

ru
nn

in
g

tim
e(

se
c)

tag similarity / BM15

00.10.20.30.40.5
0

0.2

0.4

0.6

tag similarity / tf-idf

00.10.20.30.40.5
0

0.5

1

1.5

2

ru
nn

in
g

tim
e(

se
c)

item similarity / BM15

00.10.20.30.40.5
0

0.5

1

1.5

2

item similarity / tf-idf

00.10.20.30.40.5
0

0.5

1

1.5

2

↵

ru
nn

in
g

tim
e(

se
c)

item-tag similarity / BM15

00.10.20.30.40.5
0

0.5

1

1.5

2

↵

item-tag similarity / tf-idf

CONTEXTMERGE SNS SNS/MV SNS/H SNS/L

Figure 2: Efficiency results.

score(i | u, t) = idf(t)⇥ (k1+1)fr(i | u, t)/(k1+ fr(i | u, t)),
where inverse document frequency idf is defined in a standard way.

We ran Java implementations of our algorithms on a 2.8GHz Intel
Core i7 under Ubuntu10.04, with 8GB of RAM, using PostgreSQL9.

As our focus is on optimizing social top-k retrieval, we report
here on our results for the cases when the social branch is at least
as important as the textual one, i.e., for ↵ 2 {0, . . . , 0.5}. As [19],
multiplication over the paths was chosen as the proximity aggrega-
tion function, as the best suited candidate for implicit similarity.

For the testing environment described previously, we report on
efficiency and scalability for both exact and approximate algorithms,
and on precision for the latter. For efficiency (running time), we
ignore differences in SNS’s favor that are hard to account for,
namely we do not distinguish between the user accesses by CON-
TEXTMERGE (which in a real setting, would be to disk) and the
ones by SNS (which could even be to main memory). For that, we
plugged our on-the-fly computation of proximity in the run of CON-
TEXTMERGE. Recall that an immediate consequence of Property 2
is that SNS (exact) and CONTEXTMERGE give the same results.

The relevance of personalized query results is a topic that has
been extensively treated ([20, 11, 16]). It is not our focus here, and
we view result relevance as a consequence of the scoring functions
g and h. The relevance of social search results was also extensively
evaluated in [19], over Delicious data, in a similar setting.

Efficiency. Fig. 2 gives the running time comparison for tf-idf and
BM15 scores. First, note that, in general, SNS in its exact version
drastically improves efficiency – especially for low ↵ values – when
compared to the state-of-the-art algorithm. Note that our branch
choice heuristic (in both the exact and approximate variants) brings

0 0.2 0.4 0.6 0.8 1
0.996

0.997

0.998

0.999

1.000

�

Pr
ec

is
io

n

precision

0

0.1

0.2

0.3

0.4

R
el

at
iv

e
sp

ee
du

p

speedup

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

�

Pr
ec

is
io

n

precision

0

1

2

3

R
el

at
iv

e
sp

ee
du

p

speedup

Figure 3: Precision rates vs relative speedup, ↵ = 0 – left:
SNS/MV , right: SNS/H

significant improvements (e.g., consider the difference between the
savings for ↵ = 0 and ↵ = 0.1, in the tag similarity network).4

Note that instance optimality is indeed not a synonym of efficiency
in some cases (for example, in tag similarity networks). In these
cases, our approximate approaches lead to further improvements,
supporting the intuition that even limited statistics (like mean and
variance) can render the termination conditions more tight.

The running times of SNS/MV and SNS/H were obtained for
the probabilistic threshold � = 0.9. While this is a rather weak
guarantee, we found that it still yields a good precision/efficiency
tradeoff. (For a better understanding of this tradeoff, we consider
later on the impact of � on precision.) For ↵ > 0, visiting the
per-term inverted lists in parallel with the proximity vector helps
in deriving tighter bounds for unseen items, leading to faster ter-
mination of the approximate approaches. For the landmarks-based
variant, consistent with [17]’s results, where choosing landmarks
based on centrality is shown to yield precise estimations, we took as
landmarks the 10 nodes having the highest centrality values.

To better understand how the instance optimality of SNS
↵=0

reflects in the performance results, Table 1 reports on the number
of visited users (by thousands) by CONTEXTMERGE and SNS

↵=0

(columns users). Note that SNS
↵=0 achieves good savings (in terms

of visited users), while relying on only few sequential accesses in
the inverted lists (column CIL). SNS/H can further decrease the
number of visited users in item and item-tag similarity networks,
and SNS/L performs best in tag similarity networks.

Precision versus speedup. We studied the impact of the proba-
bilistic parameter � on precision and speedup, in the approximate al-
gorithms. We define precision as the ratio between the size of the ex-
act result and the number of items returned by both the approximate
approach and SNS, i.e., precision = |TSNS/app \ TSNS|/|TSNS|.
TSNS/app is the set of items returned as top-k by an approximate
approach (SNS/MV , SNS/H or SNS/L), and TSNS is the set of
items returned by the exact algorithm.

The relative speedup is defined as speedup = time(SNS, D)
/time(SNS/app,D) � 1. We present in Figure 3 the results for
the two approximate approaches based on statistics. For SNS/MV ,
note that � has a limited influence on precision (with a minimum of
0.997 for � = 1), while ensuring reasonable speedup. The speedup
potential is greater when using histograms, with reasonable precision
levels (e.g., precision of around 0.805 when � = 0.9, for a speedup
of around 2.5). For values of � > 0.9, we note however a rapid drop
in precision. The fact that SNS/MV yields better precision than
SNS/H may seem counterintuitive, since histograms give a more
detailed description of proximity vectors. This difference is due to
looser bounds for MV , as they directly influence the termination

4Note that we cannot compare with [1]’s approach, as it only extends
classic top-k retrieval by interpreting user proximity as a binary
function (0-1 proximity), by which only users who are directly
connected to the seeker can influence the top-k result.

1 5 10 20 30 50
0

0.2

0.4

0.6

k

ru
nn

in
g

tim
e(

se
c)

tag similarity / k

1 2 3 4 5 5.7

·105

0

0.2

0.4

0.6

users

tag similarity / users

1 5 10 20 30 50
0

0.5

1

1.5

2

k

ru
nn

in
g

tim
e(

se
c)

item similarity / k

1 2 3 4 5 5.7

·105

0

0.5

1

1.5

2

users

item similarity / users

1 5 10 20 30 50
0

0.5

1

1.5

2

k

ru
nn

in
g

tim
e(

se
c)

item-tag similarity / k

1 2 3 4 5 5.7

·105

0

0.5

1

1.5

2

users

item-tag similarity / users

CONTEXTMERGE SNS SNS/MV SNS/H SNS/L

Figure 4: Scalability of the algorithms.

conditions, result in a longer run and better chances of returning a
more precise results. For the landmark-based variant, SNS/L, we
mention here that choosing 10 landmarks yields a precision above
0.65 in both datasets, when ↵ = 0, and above 0.95 for ↵ > 0.
(We also observed that with more landmarks there is no precision
improvement, but execution becomes slower.)

Scalability. We also evaluated how our approaches scale with
two key parameters, namely the result size k and the network size
(number of users), in the exclusively social case. As shown in
the top row of Figure 4, the exact approach maintains relatively
constant gains. Approximate approaches, especially SNS/H and
SNS/L, exhibit higher gains and their cost increases relatively
slowly. The “plateau” in running times for high k values is mainly
due to the fact that – as the number of retrieved items increases –
the need for accessing more items in the textual lists and more users
increases. However, beyond a certain point (here, around k = 20),
the termination conditions become easier to satisfy, and hence the
increase in cost is less sharp than for low k values. We observed
a different behavior when varying the network size (bottom row of
Figure 4). First, we can note a linear cost increase. The gains of our
algorithms w.r.t. the state-of-the-art one increase with the network
size, both for the exact and approximate versions. As with varying
k, the approximate approaches exhibit a slower cost increase in most
cases.

Wrapping up. It can be seen that, in most cases, instance op-
timality does indeed translate into significant performance gains.
These are important when top-k results need to be exact, as in cases
when pre-computed information (such as average values, histograms
or shortest paths) is not available. On the other hand, when exact

results are not needed, keeping partial aggregates such as histograms
seems to work best in sparser networks, while approaches based
on precomputed shortest paths (landmarks) seem to have a bigger
impact in denser networks. Moreover, when the result size k is large
and so the impact of “missed” items may be more limited, relying
on histograms and landmarks seem the best options for efficiency.

6. FUTURE DIRECTIONS
We see many directions for future work. Optimizing the branch

choice heuristic is one promising direction. Another one is experi-
menting with probabilistic bounds and statistics tailored to certain
assumptions (e.g, power-law distributions) or richer descriptions
for proximity vectors. Also, we intend to adapt our approach to
networks with positive and negative links (e.g., for trust and distrust).

Acknowledgments. This work was partially supported by the EU
project ARCOMEM FP7-ICT-270239.

7. REFERENCES
[1] S. Amer-Yahia, M. Benedikt, L. Lakshmanan, and J. Stoyanovich.

Efficient network aware search in collaborative tagging sites. In VLDB,
2008.

[2] S. Amer-Yahia, J. Huang, and C. Yu. Building community-centric
information exploration applications on social content sites. In
SIGMOD, 2009.

[3] S. Amer-Yahia, L. Lakshmanan, and C. Yu. Socialscope: Enabling
information discovery on social content sites. In CIDR, 2009.

[4] B. Bahmani and A. Goel. Paritioned multi-indexing: bringing order to
social search. In WWW, 2012.

[5] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing web
search using social annotations. In WWW, 2007.

[6] B. Bi, S. Lee, B. Kao, and R. Cheng. An effective and efficient method
for searching resources in social tagging systems. In ICDE, 2011.

[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. In PVLDB, 2010.

[8] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el,
I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized social
search based on the user’s social network. In CIKM, 2009.

[9] S. Cohen, B. Kimelfeld, G. Koutrica, and J. Vondrak. On the principles
of egocentric person search in social networks. In VLDS, 2011.

[10] E. Dijkstra. Note on two problems in connexion with graphs. Num.
Mathematik, 1959.

[11] Z. Dou, R. Song, and J. Wen. A large-scale evaluation and analysis of
personalized search strategies. In WWW, 2007.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, 2001.

[13] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social
bookmarking improve web search? In WSDM, 2008.

[14] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information
retrieval in folksonomies: Search and ranking. In ESWC, 2006.

[15] L. Katz. A new status index derived from sociometric analysis.
Psychometrika, 1953.

[16] I. Konstas, V. Stathopoulos, and J. Jose. On social networks and
collaborative recommendation. In SIGIR, 2009.

[17] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path
distance estimation in large networks. In CIKM, 2009.

[18] M. Richardson, R. Agrawal, and P. Domingos. Trust management for
the semantic web. In ISWC, 2003.

[19] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann,
J. Parreira, and G. Weikum. Efficient top-k querying over
social-tagging networks. In SIGIR, 2008.

[20] J. Wang, M. Clements, J. Yang, A. P. de Vries, and M. J. T. Reinders.
Personalization of tagging systems. Inf. Process. Manage., 2010.

[21] S. Xu, S. Bao, B. Fei, Z. Su, and Y. Yu. Exploring folksonomy for
personalized search. In SIGIR, 2008.

[22] P. Yin, W.-C. Lee, and K. C. Lee. On top-k social web search. In
CIKM, 2010.

