ssssssss

Large Scale Data

Management

NoSQL

Silviu Maniu, LIG, Univ. Grenoble Alpes

Data is Central

Processing / Database Link

Batch Job Stream Job e.g. sentiment
(Hadoop, Spark) (Spark, Storm) analysis

Load data
_ Write results
Write results

Vi

"=
o
]
E

7 Serve
queries

records

e.g. Twitter
trends page

Data Depends on the Application

+ Stock management [

* Health insurance management
* Health records management

* Payroll

+ Shopping

* Tweet news

» TikTok videos .

Structure ? — schema ?
Access ? — whole/part ?
Queries ? — simple, complex ?

Volume ? — centralized/
distributed ?

Evolution ? — add attributes ?
Guarantees ? - types ?

Common Patterns of Data Accesses

Large-scale data processing

+ Batch processing: Hadoop, Spark, etc.

» Perform some computation/transformation over a full dataset
* Process all data

Selective query

+ Access a specific part of the dataset

« Manipulate only data needed (1 record among millions)

* Main purpose of a database system

Types of Databases .

A file system can be seen as a very basic database
+ Directories / files to organize data
+ Very simple queries (file system path)

« Very good scalability, fault tolerance ... PostgreSQL
Other end of the spectrum: relational databases y
+ SQL query language, very expressive
+ Limited scalability MysalL:
+ Very complex data evolution potential
CORACLE

Size / Complexity

Relational
DB Document
)]
Column DB
Key/Value
DB

Complexity

Size

Size / Complexity / Facility to Change Data

Graph DB
Relational
DB Document
DB
Column DB
Key/Value
DB

Complexity

Size

Facility to make data evolve

Motivations for Alternative Models
Limitations of Relational Databases

* Performance and scalability
« Difficult to partition the data (in general run on a single server)

* Need to scale up to improve performance
+ Lack of flexibility
* Will to easily change the schema
» Need to express different relations
* Not all data are well structured
* Few open source solutions
* Mismatch between the relational model and object-oriented
programming model

lllustration of the Object- Relatlonal Mlsmatch

Figure by M. Kleppmann M ldncomiambges e tatle

blogger. |

vea | Philantheopy 1 ‘m..m,] photo_d

m 57817532

Education
Harvard University 56 21
-9

e as7 251

Lakeside School, Seattle

Contact Info

Blog: thegateanotes.com @ | |useria

Twitter. e8illGates
807 31
806 21
d | |userid
155 21
156 21

Figure: A CV in a relation database

lllustration of the Object-Relational Mismatch

Figure by M. Kleppmann

" user | id":251,

31,
" photo_url”: " /p/7/000/253/05b/308dd6e.jpg”",

{"job_title": " Co—chair”", "organization”: "Bill & Melinda Gates
Foundation”},
{"job_title": " Co—founder, Chairman”, "organization”: " Microsoft" }

" education”: [
{"school_name": "Harvard University”, "start”: 1973, "end": 1975},
{” school_name": " Lakeside School, Seattle”, "start”: null, "end": null}
1
" contact_info": {
"blog": "http://thegatesnotes.com”,
"twitter”: "http://twitter.com/BillGates”

Figure: A CV in a JSON document

NoSQL

What is NoSQL?

+ A hashtag
* NoSQL approaches were existing before the name became famous

- No SQL
- New SQL

* Not only SQL

* Relational databases will continue to exist alongside non-relational
datastores

The NoSQL Jungle

Document Database Graph Databases
o L (] . .
. * ‘: Couchbase :.. Neo4]
O K
o o ="MarkLogic
¢ Graph
mongoDB TheDistrbuted Groph Dtabase
Wide Column Stores Key-Value Databases
’ i
1 . H accurmuLo
T & redis
T amazon _ HYPERTABLE~
DynamoDB PACHE
i
|

° @Cissandra ;BHSE
= sriak |

KKKKKKKKK Amazon SimpleDB

A variety of NoSQL solutions

Difference with relational databases
* Properties =
guarantees

» Data models =
data structure

+ Underlying architecture =

implementation and performance

V.Marangozova LSDM 2024-2025

A Timeline

Ti me| ine Elastic‘Search
Spanner
[|
Neod; | ‘S”‘a’k
Hive
software | |
Sybase 1Q MongoDB
([
PostgreSQL Cassandra
[1]
Teradata
Oracle Walmart 1TB Hadoop
1960 1970 1980 1990 2000 ‘ HJIO 2020
GFS
Codd's relational
model MapReduce
BigTable

Dynamo

NoSQL (batch)
Ma:

Who Influenced Who?
Influences . :

| Gy e N
L Spark
MapReduce N =
BigTable - — - _ - Spanner
7 cassandra
_ ®hCouchDB el
. Couchbase
Dynamo -
& redis
sriak . m
——— Solr-

N ucene

> & elasticsearch

7"%

Types of Parallelism

Parallelism in DBMS has a long history:

* inter-operator: every CPU computes a query operation (pipeline);
volcano model — a query operation sends the output directly to the

next operation.

« intra-operator: every CPU computes the entire query on a part of the

data

+ inter-query: several queries executed in parallel
Since then:

- large scale data: distributed computing on a large amount of computers.

- shared nothing architecture

Distributed System

A distributed computing system is a system including several
computational entities where:

+ Each entity has its own local memory
+ All entities communicate by message passing over a network

Each entity of the system is called a node.

Distributed Databases

Why distribute?

+ parallelism (=performance)

+ scalability

+ availability: accessibility and fault tolerance (cloud)

+ optimize for different hardware, distribute geographically,...
Implementation challenges

+ decentralized architecture; maintain coherence between copies,
task and data partitioning

« shared nothing architecture (no shared disk, not shared memory
pool); how to chose the partitioning

How to Distribute

How to distribute data: partitioning and replication

Replication
+ Several nodes host a copy of the data
+ Main goal: Fault tolerance
No data lost if one node crashes

Partitioning
+ Splitting the data into partitions
« Partitions are assigned to different nodes
» Main goal: Performance
Partitions can be processed in parallel

read A read A
Client 1 Switch Client 2

Replication

Obijectives: reliability, read performance. /l\ .

Techniques: - A
- RAM+logs on disk: write-ahead logs (WAL) A
- generally, asynchronous (eventual consistency)

- sometimes synchronized (but can have slow updates)
- versioning (vector clocks)
- network state (faults,...): gossip
- fault recovery: consensus (Paxos)
Ex: MongoDB: asynchronous, WAL.
In distributed DBMS:
PostgreSQL (WAL), MariaDB, Oracle (materialized views), SQL Server...
Often admin level choices (number of masters, synchronization,...)

read A read C
Client 1 Switch Client 2

Partitioning / Sharding

Objectives: performance by distributing the load

Main challenge: how to distribute the load (for reads or for writes?)

Challenges of Partitioning / Replicating

+ good data partition/replication

+ coherence (trade-off between performance and integrity when
dealing with reads and writes)

« distributing computation tasks (to minimize data exchange)
» fault tolerance

* transaction control

+ data privacy

Distributed Architectures

Master-Slave: MongoDB, HDFS, BigTable

Decentralised: Dynamo, Cassandra

On Guarantees: Transactions

- The concept of transaction @ @
» Groups several read and write operations

into a logical unit

Operation 1 Operation 1

» A group of reads and writes are executed as

one operation: l l
+ The entire transaction succeeds (commit) Operation 2 Operation 2 }—>
« or the entire transaction fails (abort, rollback) l
* If a transaction fails, concil opmm‘
the application can safely retry i

S

Example of a Transaction

Transaction

Database

Commit

frerrrrererereresesenenes C
%Resevve seat Rollback J

Why Transactions?

+ Crashes may occur at any time
+ On the database side
+ On the application side
* The network might not be reliable

+ Several clients may write to the database at the same time

ACID Properties

» Having such properties make
the life of developers easy, but:

+ ACID properties are not the
same in all databases

« It is not even the same in all SQL
databases
* NoSQL solutions tend to
provide weaker safety
guarantees

+ To have better performance,
scalability, etc.

ACID Properties
\

Atomicity

_ Each transaction is “all or nothing”

Consistency

Data should be valid according to all defined rules
1
Isolation

do not affect each other

‘,// « Durability

\

) C itted data would not be lost, even after power failure.

Atomicity

Description

+ A transactions succeeds completely or fails completely
« If a single operation in a transaction fails, the whole transaction should fail
« If a transaction fails, the database is left unchanged

* It should be able to deal with any faults in the middle of a transaction
+ If a transaction fails, a client can safely retry

In the NoSQL context:
+ Atomicity is still ensured

Consistency

Description

+ Ensures that the transaction brings the database from a valid
state to another valid state
+ All university staff is paid at the end of month

* It is a property of the application, not of the database

In the NoSQL context:
+ Consistency is (often) not discussed

Durability

Description

« Ensures that once a transaction has committed successfully,
data will not be lost
+ Even if a server crashes (flush to a storage device, replication)

In the NoSQL context:
* Durability is also ensured

Isolation

Description

» Concurrently executed transactions are isolated from each other

* We need to deal with concurrent transactions that access the same
data

+ Serializability
* High level of isolation where each transaction executes as if the
transactions are applied serially, one after the other

In the NoSQL context:
* Let us have a look at the theorem

The CAP "Theorem" (E. Brewer, 2000)

3 properties of databases
Consistency

* What guarantees do we have on the value returned by a read
operation?
« It strongly relates to Isolation in ACID (and not to consistency)

Availability

* The system should always accept updates

Partition tolerance

» The system should be able to deal with a partitioning of the network

The CAP Theorem Statement

The Intuition Behind CAP

It is impossible to have a system that provides Consistency,
Availability, and Partition tolerance at the same time. . .
Partitioning (failures) are inevitable in a large scale distributed 2:ReadB? .p| B=3 B=3
setting => need to choose between availability and consistency u..‘,.,‘l__’m‘_"""e 8=¢
In the CAP theorem:
+ Consistency is meant as serializability (the strongest > ng
consistency guarantee)
+ Availability is meant as total availability
In practice, different trade-offs can be provided Partitioning
The impact of CAP on ACID for NoSQL Key-Value Store
. « Data are stored as key-value pairs hash
The main consequence « The value can be a data structure (eg, a list) ke¥s ~ function buckets
+ No NoSQL database with strong Isolation « In general, only support &
Q 9 sin%le—object Hansactions John Smith 03 eioans
* In this case, key-value pairs . . 03
The other ACID properties? . ExaF:ng_Ies: Heasmin :
* Rheais
o At0m|C|ty + Amazon DynamoDB sandrabee —— 44 5219655
+ Each side should ensure atomicity + Use cases =
« Durability * Scalable cache for data Image by J. Stolfi

+ Should never be compromised

+ Client sessions

* Note that some solutions ensure durability by writing data to disk

Column Family Stores

+ Data are organized in rows and columns (Tabular data store)

» The data are arranged based on the rows
+ Column families are defined by users to improve performance
» The idea is to group related columns together

+ Only support single-object transactions
* In this case, a row
» Examples:
+ BigTable/HBase
+ Cassandra
» Use case:
» Data with some structure with the goal of achieving scalability and high

throughput
» Provide more complex lookup operations than KV stores

Column Family Stores

Order Table
A
7 7 Ya Ya 29
Family: Customer Family: Items Family: Delivery
(((1 (] Notes
(1| |FirstName | | Surname tem-4 tem-9
RowKey Adam | | Fowler 2 1 ——
127698 J L L J L o il
™ | [Memberio| | status ltem-43 s
| st6e2 Premier 6 iz
03:00
\ — - —))
r Ia 2Ya Ya N
Family: Customer Family: Items Family: Delivery
r 1| | FirstName | | Surname Htom-72
RowKey J Bloggs 2
895482 L
L (| [TEa
ftem-32 2015-01-03
1 1400
\ L J L -)
J

Note that a row does not need to have entries for all columns

Document Databases

+ Data are organized in Key-Document pairs
« A document is a nested structure with embedded metadata
» No definition of a global schema
+ Popular formats: XML, JSON

+ Only support single-object transactions
« In this case, a document or a field inside a document

+ Examples:
+ MongoDB
« CouchDB
» Use case:
« An alternative to relational databases for structured data
« Offer a richer set of operations compared to KV stores:
+ Update, Find, etc.

Document Databases

{

{
A document can ’ ‘Dbﬂ‘-:f;:fdf:}mw)'
have one or
more documents

inside.

ming”, “tennis”

T
name ""a"""r> Embedded document
‘capital” : "Paris"
- > Embedded document

> Embedded document

Graph Databases

* Represent data as graphs
— Nodes / relationships with properties as K/V pairs

- B name: Morpheus

Foull 2o=: 25 —ows» I occupation: Total badass
L ome: Thomas andersson e B
o

ot

age: xda\s

language: C++
name: Agent Smith
ion: 1.0b.

a s
/ dis ecret
y y
last name: Reagan name: The Architect
name: Cypher g

Graph DB: Neo4j

* Rich data format
* Query language as pattern matching
« Limited scalability: replication to scale reads. writes need to be done to

every repllca Cypher Query Language @ neosj
Nodo Nodo
MATCH (:Person 1 name:“Dan” Person {name:“Ann"}
e — W N h,—/
Label Property Label Property

Relationships in Data

* Many-to-one
+ Example: Many people went to the same university
* One-to-Many: An item may have several entries of the same
kind
+ Example: One person may have had several positions during her career
* Document DB allow storing such information easily and allow simple
read operations
* Many-to-Many
+ Example: Several persons may have worked in the same company.
« Graph DB

Many-to-One

Relational vs Document DB

Relational databases use a foreign key
+ Consistency and low memory footprint (normalization)
+ Easy updates and support for joins
« Difficult to scale
Document databases duplicate data
« Efficient read operations
+ Easy to scale

+ Higher memory footprint and updates are more difficult (risk of
consistency issues)
» Transactions on multiple objects could be very useful in this case

+ Join operations have to be implement by the application

Google BigTable

+ Column family data store

+ Data storage system used by many Google services:
Youtube,Google maps, Gmail, etc.
+ Paper published by Google in 2006 (F. Chang et al)

* Now available as a service on Google Cloud
« Many ideas reused in other NoSQL databases

Motivations

+ A system that can store very large amounts of data
» TB or PB of data
+ A very large number of entries
« Small entries (each entry is an array of bytes)

+ A simple data model
+ Key-value pairs (A key identifies a row)
+ Multi-dimensional data
» Sparse data
+ Data are associated with timestamps

» Works at very large scale
« Thousands of machines
» Millions of users

About the Data Model

* Rows are identified by keys (arbitrary strings)
* Modifications on one row are atomic
* Rows are maintained in lexicographic order

+ Columns are grouped in columns families
» Columns can be sparse
+ Clients can ask to retrieve a column family for one row

+ Each cell can contain multiple versions indexed by a timestamp
+ Assigned by BigTable or by the client

« Most recent versions are accessed first
+ GC politics: Keep last n versions or Keep all new-enough versions

About the Data Model

rowkeys column family column family column family
A

f Al
‘language:” “contents” anchor:cnnsi.com anchor:mylook.ca
com.aaa EN <IDOCTYPE html

g PUBLIC.
e com.cn.www EN <IDOCTYPE *CNN" “CNN.com"
b4 HTML PUBLIC.
5 | com.cnn.wwwiTECH EN <DOCTYPE
12 HTML>.

com.weather EN <IDOCTYPE

HTML>.
"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
. L L

S N R I R o

"CNN" }‘mg [“CNN.com"Fts
1

|
i t
]
B e e S
\ \ i

t
"com.cnn.www" — o

Building Blocks of BigTable

* A master
+ Assign tables parts (tablets) to servers
+ With the help of a locking service
* Tablet servers
+ Store the tables (divided in tablets)
» Process client requests
* Tablets
+ Stored as SSTables (Sorted String Tables)
+ Stored in the Google File System for durability

Implementation of Tablets

memtable < Read Op
Memory
GFS ‘
tablet log ‘
-\ Write Op
SSTable Files

memtable

Write Operation

Memory

GFS

tablet log

~ Write Op

+ Data stored in memory (Memtable)
+ Any update is written to a commit log on GFS for durability
* The log is shared between all hosted tablets

* Periodic writes to disk

+ When the Memtable becomes too big:
+ Copied as a new SSTable to GFS

+ Multiple SSTables are created if locality groups are defined (based on column families)
+ Reduces the memory footprint and reduces the amount of work to do during recovery

+ SSTables are immutable (no problem of concurrency control)

Read Operation

* The state of the tablet = the Memtable + all SSTables
» A merged view needs to be created

» The Memtable and the SSTables may contain delete operations
* Locality groups help improving the performance of read

operations
* Major compaction

* When the number of SSTables becomes too big, merge them into a

single SSTable
» Allow reclaiming resources for deleted data
 Improve the performance of read operations

Bloom Filters and Reads

+ During a read operation, potentially several SSTables need to be
read

» How to avoid reading all SSTables when not needed?
+ Use of Bloom filters (1970 !)
+ Data structure that allows us to know if a SStable contains an entry for a
given key-column pair
* Bloom filter
+ Implements a membership function (is X in the set?)
« If the bloom filter answers no: it is guaranteed that X is not present
« If the bloom filter answers yes: the element is in the set with a high
probability
+ Good trade-off between accuracy and memory footprint

About bloom filters
® A vector of n bits and k hash functions
® On insert:

» Compute the k hash values
> Set the corresponding bits to 1 in the vector

® On lookup:

» Compute the k hash values
> Test whether all bits are set to 1

{x,y,2}

(oftJoJrfr[1fofoJoJoJoJiJof1fofo[1]0]

\

Apache Cassandra

+ Column family data store

+ Paper published by Facebook in 2010 (A. Lakshman and P.
Malik)
+ Used for implementing search functionalities
* Released as open source
+ Build on top of several ideas introduced by BigTable

+ Warning: Many changes in the design have been made sinc: e
version of Cassandra /W

cassandra

Partioning in Cassandra

Ideas from DHT = Distributed Hash Tables

» Hash function: hash(x)
= x mod 10
1 » Insert numbers 0, 1, 4,
9, 16, and 25
- » Easy to find if a given
key is present in the
el table

© @ NG U AWN 2o
N
&

-
. DHT: Principle
In a DHT, each node is [o]
responsible for one or more
hash buckets it
As nodes join and leave, the a
P v
responsibilities change i §
Nodes communicate among % ;
themselves to find the vioe
responsible node
p o > (lN—
Scalable communications b —
make DHTs efficient : [9]

DHTs support all the normal
pp Lectures of Prof. Jussi Kangasharju,

hash table operations http://www.cs.helsinki.fi/u/jakangas/

Partioning in Cassandra

Partitioning based on a hashed name space

+ Data items are identified by keys

+ Data are assigned to nodes based on a hash of the key
+ Tries to avoid hot spots

Namespace represented as a ring

+ Allows increasing incrementally the size of the system

+ Each node is assigned a random identifier
+ Defines the position of a node in the ring

« The nodes is responsible for all the keys in the range between its
identifier and the one of the previous node.

Partioning in Cassandra

+ Limits : High risk of imbalance
+ Some nodes may store more keys than others

» Nodes are not necessarily well distributed on
the ring, especially true with a low number of
nodes

* Issues when nodes join or leave the system

« When a node joins, it gets part of the load of its
successor

+ When a node leaves, all the corresponding
keys are assigned to the successor

Partitioning and Virtual Nodes

« Concept of virtual nodes

+ Assign multiple random
positions to each node

The key space is better distributed between the nodes

http://www.cs.helsinki.fi/u/jakangas/

Partitioning and virtual nodes

If a node crashes, the load is redistributed between multiple nodes

Partitioning and Replication

Iltems are replicated for fault tolerance.

+ Simple strategy
* Place replicas on the next R nodes in the ring

* Topology-aware placement

« Iterate through the nodes clockwise until finding a node meeting the
required condition

» For example a node in a different rack

Replication in Cassandra

Replication is based on quorums

+ A read/write request might be sent to a subset of the replicas
« To tolerate f faults, it has to be sent to f + 1 replicas
+ Consistency
« The user can choose the level of consistency
« Trade-off between consistency and performance (and availability)
+ Eventual consistency
« If an item is modified, readers will eventually see the new value

A Read/Write request

Figure from https://dzone.com/articles/introduction-apache-cassandras

® A client can contact any node in the system

® The coordinator contacts all replicas

® The coordinator waits for a specified number of responses
before sending an answer to the client

Consistency Levels

ONE (default level)
» The coordinator waits for one ack on write before answering the client
» The coordinator waits for one answer on read before answering the client

» Lowest level of consistency
+ Reads might return stale values
» We will still read the most recent values in most cases
QUORUM
» The coordinator waits for a majority of acks on write before answering the client
. Tlhe ?oordinator waits for a majority of answers on read before answering the
clien

+ High level of consistency
«+ At least one replica will return the most recent value

References

+ Bigtable: A Distributed Storage System for Structured Data., F.
Chang et al., OSDI, 2006.

+ Cassandra: a decentralized structured storage system ., A.
Lakshman et al., SIGOPS OS review, 2010.

* http://martin.kleppmann.com/2015/05/11/ please-stop-calling-
databases-cp-or-ap.html, M. Kleppmann, 2015.

* https://jvns.ca/blog/2016/11/19/ a-critique-of-the-cap-
theorem/,
J. Evans, 2016.

References

+ Lecture notes of V.Leroy

* Lecture notes of F.Zanon Boito
* Lecture notes of T.Ropars

* Lecture notes of B. Groz

* Designing Data-Intensive Applications by Martin Kleppmann
« Chapters 2 and 7

