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Data is Central

Data Depends on the Application

• Stock management

• Health insurance management

• Health records management

• Payroll

• Shopping

• Tweet news

• TikTok videos

...

• Structure ? – schema ? 
• Access ? – whole/part ? 
• Queries ? – simple, complex ? 
• Volume ? – centralized/

distributed ? 
• Evolution ? – add attributes ? 
• Guarantees ? – types ?

Design questions

Common Patterns of Data Accesses
Large-scale data processing

• Batch processing: Hadoop, Spark, etc.

• Perform some computation/transformation over a full dataset 

• Process all data

Selective query

• Access a specific part of the dataset

• Manipulate only data needed (1 record among millions) 

• Main purpose of a database system



Types of Databases
A file system can be seen as a very basic database 


• Directories / files to organize data

• Very simple queries (file system path)

• Very good scalability, fault tolerance ...


Other end of the spectrum: relational databases

• SQL query language, very expressive 

• Limited scalability

• Very complex data evolution potential

Size / Complexity

Size / Complexity / Facility to Change Data

Facility to make data evolve

Motivations for Alternative Models 
Limitations of Relational Databases
• Performance and scalability


• Difficult to partition the data (in general run on a single server) 

• Need to scale up to improve performance


• Lack of flexibility

• Will to easily change the schema

• Need to express different relations 

• Not all data are well structured


• Few open source solutions

• Mismatch between the relational model and object-oriented 

programming model



Illustration of the Object-Relational Mismatch 
Figure by M. Kleppmann 

Illustration of the Object-Relational Mismatch 
Figure by M. Kleppmann 

NoSQL
What is NoSQL?

• A hashtag


• NoSQL approaches were existing before the name became famous 

• No SQL

• New SQL

• Not only SQL


• Relational databases will continue to exist alongside non-relational 
datastores

The NoSQL Jungle
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A variety of NoSQL solutions

Difference with relational databases

• Properties =  

guarantees

• Data models =  

data structure

• Underlying architecture =  

implementation and performance

V.Marangozova
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Types of Parallelism
Parallelism in DBMS has a long history:


• inter-operator: every CPU computes a query operation (pipeline); 
volcano model – a query operation sends the output directly to the 
next operation.


• intra-operator: every CPU computes the entire query on a part of the 
data


• inter-query: several queries executed in parallel

Since then:


- large scale data: distributed computing on a large amount of computers.

- shared nothing architecture



Distributed System

A distributed computing system is a system including several 
computational entities where:


• Each entity has its own local memory

• All entities communicate by message passing over a network


Each entity of the system is called a node.

Distributed Databases
Why distribute?


• parallelism (=performance)

• scalability

• availability: accessibility and fault tolerance (cloud)

• optimize for different hardware, distribute geographically,...


Implementation challenges

• decentralized architecture; maintain coherence between copies, 

task and data partitioning

• shared nothing architecture (no shared disk, not shared memory 

pool); how to chose the partitioning

How to Distribute
How to distribute data: partitioning and replication


Replication 
• Several nodes host a copy of the data

• Main goal: Fault tolerance


No data lost if one node crashes


Partitioning 
• Splitting the data into partitions

• Partitions are assigned to different nodes

• Main goal: Performance


Partitions can be processed in parallel

Replication
Objectives: reliability, read performance.

Techniques:


- RAM+logs on disk: write-ahead logs (WAL)

- generally, asynchronous (eventual consistency)

- sometimes synchronized (but can have slow updates)

- versioning (vector clocks)

- network state (faults,...): gossip

- fault recovery: consensus (Paxos)


Ex: MongoDB: asynchronous, WAL.

In distributed DBMS:


PostgreSQL (WAL), MariaDB, Oracle (materialized views), SQL Server...

Often admin level choices (number of masters, synchronization,...)

Replication

Switch

A

A

A

A

A

Client 1 Client 2

read A read Awrite A

Client 2

write A=1 write A=2

?

?

?

?

?
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Partitioning / Sharding

Objectives: performance by distributing the load


Main challenge: how to distribute the load (for reads or for writes?)


Partitioning

Switch

A

B

C

D

Client 1 Client 2

read A read Cwrite A write Cread A-D
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Challenges of Partitioning / Replicating

• good data partition/replication

• coherence (trade-off between performance and integrity when 

dealing with reads and writes)

• distributing computation tasks (to minimize data exchange)

• fault tolerance

• transaction control

• data privacy

Distributed Architectures

Master-Slave: MongoDB, HDFS, BigTable


Decentralised: Dynamo, Cassandra

On Guarantees: Transactions
• The concept of transaction


• Groups several read and write operations 
into a logical unit 


• A group of reads and writes are executed as 
one operation:

• The entire transaction succeeds (commit)

• or the entire transaction fails (abort, rollback)


• If a transaction fails,  
the application can safely retry



Example of a Transaction Why Transactions?
• Crashes may occur at any time 


• On the database side

• On the application side

• The network might not be reliable


• Several clients may write to the database at the same time

ACID Properties
• Having such properties make 

the life of developers easy, but: 

• ACID properties are not the 

same in all databases

• It is not even the same in all SQL 

databases

• NoSQL solutions tend to 

provide weaker safety 
guarantees 

• To have better performance, 

scalability, etc.

Atomicity
Description 
• A transactions succeeds completely or fails completely 


• If a single operation in a transaction fails, the whole transaction should fail

• If a transaction fails, the database is left unchanged


• It should be able to deal with any faults in the middle of a transaction

• If a transaction fails, a client can safely retry


In the NoSQL context: 
• Atomicity is still ensured



Consistency
Description 
• Ensures that the transaction brings the database from a valid 

state to another valid state

• All university staff is paid at the end of month


• It is a property of the application, not of the database


In the NoSQL context: 
• Consistency is (often) not discussed

Durability
Description 
• Ensures that once a transaction has committed successfully, 

data will not be lost

• Even if a server crashes (flush to a storage device, replication)


In the NoSQL context: 
• Durability is also ensured

Isolation
Description 
• Concurrently executed transactions are isolated from each other


• We need to deal with concurrent transactions that access the same 
data


• Serializability

• High level of isolation where each transaction executes as if the 

transactions are applied serially, one after the other 


In the NoSQL context: 
• Let us have a look at the CAP theorem

The CAP "Theorem" (E. Brewer, 2000)
3 properties of databases

Consistency 
• What guarantees do we have on the value returned by a read 

operation?

• It strongly relates to Isolation in ACID (and not to consistency)


Availability 
• The system should always accept updates

Partition tolerance 
• The system should be able to deal with a partitioning of the network



The CAP Theorem Statement
It is impossible to have a system that provides Consistency, 
Availability, and Partition tolerance at the same time. 
Partitioning (failures) are inevitable in a large scale distributed 
setting => need to choose between availability and consistency  
In the CAP theorem:


• Consistency is meant as serializability (the strongest 
consistency guarantee)


• Availability is meant as total availability

In practice, different trade-offs can be provided

The Intuition Behind CAP

The impact of CAP on ACID for NoSQL
The main consequence


• No NoSQL database with strong Isolation  

The other ACID properties?

• Atomicity


• Each side should ensure atomicity

• Durability


• Should never be compromised

Key-Value Store
• Data are stored as key-value pairs


• The value can be a data structure (eg, a list)

• In general, only support  

single-object transactions 

• In this case, key-value pairs


• Examples: 

• Redis

• Amazon DynamoDB


• Use cases

• Scalable cache for data

• Client sessions

• ...


• Note that some solutions ensure durability by writing data to disk

Image by J. Stolfi 



Column Family Stores
• Data are organized in rows and columns (Tabular data store)


• The data are arranged based on the rows

• Column families are defined by users to improve performance

• The idea is to group related columns together


• Only support single-object transactions

• In this case, a row


• Examples:

• BigTable/HBase 

• Cassandra


• Use case:

• Data with some structure with the goal of achieving scalability and high 

throughput

• Provide more complex lookup operations than KV stores

Column Family Stores

Note that a row does not need to have entries for all columns

Document Databases
• Data are organized in Key-Document pairs


• A document is a nested structure with embedded metadata

• No definition of a global schema 

• Popular formats: XML, JSON


• Only support single-object transactions

• In this case, a document or a field inside a document


• Examples:

• MongoDB

• CouchDB


• Use case:

• An alternative to relational databases for structured data

• Offer a richer set of operations compared to KV stores:


• Update, Find, etc.

Document Databases



Graph Databases Graph DB: Neo4j
• Rich data format


• Query language as pattern matching 

• Limited scalability: replication to scale reads, writes need to be done to 

every replica

Relationships in Data
• Many-to-one


• Example: Many people went to the same university

• One-to-Many: An item may have several entries of the same 

kind

• Example: One person may have had several positions during her career

• Document DB allow storing such information easily and allow simple 

read operations

• Many-to-Many


• Example: Several persons may have worked in the same company.

• Graph DB

Many-to-One 
Relational vs Document DB
Relational databases use a foreign key 
• Consistency and low memory footprint (normalization)

• Easy updates and support for joins 

• Difficult to scale

Document databases duplicate data 
• Efficient read operations

• Easy to scale

• Higher memory footprint and updates are more difficult (risk of 

consistency issues)

• Transactions on multiple objects could be very useful in this case


• Join operations have to be implement by the application



Google BigTable
• Column family data store

• Data storage system used by many Google services: 

Youtube,Google maps, Gmail, etc.

• Paper published by Google in 2006 (F. Chang et al)


• Now available as a service on Google Cloud 

• Many ideas reused in other NoSQL databases

Motivations
• A system that can store very large amounts of data 


• TB or PB of data

• A very large number of entries

• Small entries (each entry is an array of bytes)


• A simple data model

• Key-value pairs (A key identifies a row)

• Multi-dimensional data

• Sparse data

• Data are associated with timestamps


• Works at very large scale

• Thousands of machines 

• Millions of users

About the Data Model
• Rows are identified by keys (arbitrary strings) 


• Modifications on one row are atomic

• Rows are maintained in lexicographic order


• Columns are grouped in columns families

• Columns can be sparse

• Clients can ask to retrieve a column family for one row


• Each cell can contain multiple versions indexed by a timestamp

• Assigned by BigTable or by the client 

• Most recent versions are accessed first 

• GC politics: Keep last n versions or Keep all new-enough versions

About the Data Model



Building Blocks of BigTable
• A master


• Assign tables parts (tablets) to servers

• With the help of a locking service


• Tablet servers

• Store the tables (divided in tablets) 

• Process client requests


• Tablets

• Stored as SSTables (Sorted String Tables)

• Stored in the Google File System for durability

Implementation of Tablets

Write Operation

• Data stored in memory (Memtable)

• Any update is written to a commit log on GFS for durability

• The log is shared between all hosted tablets


• Periodic writes to disk

• When the Memtable becomes too big:


• Copied as a new SSTable to GFS

• Multiple SSTables are created if locality groups are defined (based on column families)

• Reduces the memory footprint and reduces the amount of work to do during recovery

• SSTables are immutable (no problem of concurrency control)

Read Operation
• The state of the tablet = the Memtable + all SSTables


• A merged view needs to be created

• The Memtable and the SSTables may contain delete operations


• Locality groups help improving the performance of read 
operations


• Major compaction

• When the number of SSTables becomes too big, merge them into a 

single SSTable

• Allow reclaiming resources for deleted data 

• Improve the performance of read operations



Bloom Filters and Reads
• During a read operation, potentially several SSTables need to be 

read

• How to avoid reading all SSTables when not needed?


• Use of Bloom filters (1970 !)

• Data structure that allows us to know if a SStable contains an entry for a 

given key-column pair

• Bloom filter


• Implements a membership function (is X in the set?)

• If the bloom filter answers no: it is guaranteed that X is not present

• If the bloom filter answers yes: the element is in the set with a high 

probability

• Good trade-off between accuracy and memory footprint

Apache Cassandra
• Column family data store

• Paper published by Facebook in 2010 (A. Lakshman and P. 

Malik)

• Used for implementing search functionalities 

• Released as open source


• Build on top of several ideas introduced by BigTable

• Warning: Many changes in the design have been made since the first 

version of Cassandra

Partioning in Cassandra
Ideas from DHT = Distributed Hash Tables



Lectures of Prof. Jussi Kangasharju,  
http://www.cs.helsinki.fi/u/jakangas/

Partioning in Cassandra
Partitioning based on a hashed name space 
• Data items are identified by keys

• Data are assigned to nodes based on a hash of the key

• Tries to avoid hot spots 

Namespace represented as a ring 
• Allows increasing incrementally the size of the system

• Each node is assigned a random identifier


• Defines the position of a node in the ring

• The nodes is responsible for all the keys in the range between its 

identifier and the one of the previous node.

Partioning in Cassandra
• Limits : High risk of imbalance

• Some nodes may store more keys than others

• Nodes are not necessarily well distributed on 

the ring, especially true with a low number of 
nodes


• Issues when nodes join or leave the system

• When a node joins, it gets part of the load of its 

successor

• When a node leaves, all the corresponding 

keys are assigned to the successor

Partitioning and Virtual Nodes
• Concept of virtual nodes

• Assign multiple random 

positions to each node

http://www.cs.helsinki.fi/u/jakangas/


Partitioning and Replication
Items are replicated for fault tolerance.

• Simple strategy


• Place replicas on the next R nodes in the ring

• Topology-aware placement


• Iterate through the nodes clockwise until finding a node meeting the 
required condition


• For example a node in a different rack

Replication in Cassandra
Replication is based on quorums 
• A read/write request might be sent to a subset of the replicas 


• To tolerate f faults, it has to be sent to f + 1 replicas

• Consistency


• The user can choose the level of consistency

• Trade-off between consistency and performance (and availability)


• Eventual consistency

• If an item is modified, readers will eventually see the new value



Consistency Levels
ONE (default level) 
• The coordinator waits for one ack on write before answering the client

• The coordinator waits for one answer on read before answering the client

• Lowest level of consistency


• Reads might return stale values

• We will still read the most recent values in most cases


QUORUM 
• The coordinator waits for a majority of acks on write before answering the client

• The coordinator waits for a majority of answers on read before answering the 

client

• High level of consistency


• At least one replica will return the most recent value
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