
Silviu Maniu, LIG, Univ. Grenoble Alpes

Large Scale Data
Management
NoSQL

Large-Scale Data Management

Introduction

2025

Silviu Maniu, LIG, Univ. Grenoble Alpes

1/37

Data is Central

Data Depends on the Application

• Stock management

• Health insurance management

• Health records management

• Payroll

• Shopping

• Tweet news

• TikTok videos

...

• Structure ? – schema ?
• Access ? – whole/part ?
• Queries ? – simple, complex ?
• Volume ? – centralized/

distributed ?
• Evolution ? – add attributes ?
• Guarantees ? – types ?

Design questions

Common Patterns of Data Accesses
Large-scale data processing

• Batch processing: Hadoop, Spark, etc.

• Perform some computation/transformation over a full dataset

• Process all data

Selective query

• Access a specific part of the dataset

• Manipulate only data needed (1 record among millions)

• Main purpose of a database system

Types of Databases
A file system can be seen as a very basic database

• Directories / files to organize data

• Very simple queries (file system path)

• Very good scalability, fault tolerance ...

Other end of the spectrum: relational databases

• SQL query language, very expressive

• Limited scalability

• Very complex data evolution potential

Size / Complexity

Size / Complexity / Facility to Change Data

Facility to make data evolve

Motivations for Alternative Models 
Limitations of Relational Databases
• Performance and scalability

• Difficult to partition the data (in general run on a single server)

• Need to scale up to improve performance

• Lack of flexibility

• Will to easily change the schema

• Need to express different relations

• Not all data are well structured

• Few open source solutions

• Mismatch between the relational model and object-oriented

programming model

Illustration of the Object-Relational Mismatch 
Figure by M. Kleppmann

Illustration of the Object-Relational Mismatch 
Figure by M. Kleppmann

NoSQL
What is NoSQL?

• A hashtag

• NoSQL approaches were existing before the name became famous

• No SQL

• New SQL

• Not only SQL

• Relational databases will continue to exist alongside non-relational
datastores

The NoSQL Jungle

LSDM 2024-2025

A variety of NoSQL solutions

Difference with relational databases

• Properties =  

guarantees

• Data models =  

data structure

• Underlying architecture =  

implementation and performance

V.Marangozova

A Timeline
Timeline

Codd’s relational
model

GFS

MapReduce

BigTable

Dynamo

Oracle

PostgreSQL

Teradata
Walmart 1TB

Sybase IQ

Neo4j

ElasticSearch

Hadoop

Cassandra

MongoDB

Hive

Spark

Spanner

1960 1970 1980 1990 2000 2010 2020

Codd’s relational
model

GFS

MapReduce

BigTable

Dynamo

Oracle

PostgreSQL

Teradata
Walmart 1TB

Sybase IQ

Neo4j

ElasticSearch

Hadoop

Cassandra

MongoDB

Hive

Spark

Spanner

articles

software

Relational First shared-
nothing par-
allel DBMS

NoSQL (batch)
Mass. parallel
column-storage

Relational again
Essor ML

Cloud

B.Groz 5

Who Influenced Who?
Influences

GFS
MapReduce

BigTable

Dynamo

Spanner

B.Groz 6

Types of Parallelism
Parallelism in DBMS has a long history:

• inter-operator: every CPU computes a query operation (pipeline);
volcano model – a query operation sends the output directly to the
next operation.

• intra-operator: every CPU computes the entire query on a part of the
data

• inter-query: several queries executed in parallel

Since then:

- large scale data: distributed computing on a large amount of computers.

- shared nothing architecture

Distributed System

A distributed computing system is a system including several
computational entities where:

• Each entity has its own local memory

• All entities communicate by message passing over a network

Each entity of the system is called a node.

Distributed Databases
Why distribute?

• parallelism (=performance)

• scalability

• availability: accessibility and fault tolerance (cloud)

• optimize for different hardware, distribute geographically,...

Implementation challenges

• decentralized architecture; maintain coherence between copies,

task and data partitioning

• shared nothing architecture (no shared disk, not shared memory

pool); how to chose the partitioning

How to Distribute
How to distribute data: partitioning and replication

Replication
• Several nodes host a copy of the data

• Main goal: Fault tolerance

No data lost if one node crashes

Partitioning
• Splitting the data into partitions

• Partitions are assigned to different nodes

• Main goal: Performance

Partitions can be processed in parallel

Replication
Objectives: reliability, read performance.

Techniques:

- RAM+logs on disk: write-ahead logs (WAL)

- generally, asynchronous (eventual consistency)

- sometimes synchronized (but can have slow updates)

- versioning (vector clocks)

- network state (faults,...): gossip

- fault recovery: consensus (Paxos)

Ex: MongoDB: asynchronous, WAL.

In distributed DBMS:

PostgreSQL (WAL), MariaDB, Oracle (materialized views), SQL Server...

Often admin level choices (number of masters, synchronization,...)

Replication

Switch

A

A

A

A

A

Client 1 Client 2

read A read Awrite A

Client 2

write A=1 write A=2

?

?

?

?

?

35

Partitioning / Sharding

Objectives: performance by distributing the load

Main challenge: how to distribute the load (for reads or for writes?)

Partitioning

Switch

A

B

C

D

Client 1 Client 2

read A read Cwrite A write Cread A-D

37

Challenges of Partitioning / Replicating

• good data partition/replication

• coherence (trade-off between performance and integrity when

dealing with reads and writes)

• distributing computation tasks (to minimize data exchange)

• fault tolerance

• transaction control

• data privacy

Distributed Architectures

Master-Slave: MongoDB, HDFS, BigTable

Decentralised: Dynamo, Cassandra

On Guarantees: Transactions
• The concept of transaction

• Groups several read and write operations
into a logical unit

• A group of reads and writes are executed as
one operation:

• The entire transaction succeeds (commit)

• or the entire transaction fails (abort, rollback)

• If a transaction fails,  
the application can safely retry

Example of a Transaction Why Transactions?
• Crashes may occur at any time

• On the database side

• On the application side

• The network might not be reliable

• Several clients may write to the database at the same time

ACID Properties
• Having such properties make

the life of developers easy, but:

• ACID properties are not the

same in all databases

• It is not even the same in all SQL

databases

• NoSQL solutions tend to

provide weaker safety
guarantees

• To have better performance,

scalability, etc.

Atomicity
Description
• A transactions succeeds completely or fails completely

• If a single operation in a transaction fails, the whole transaction should fail

• If a transaction fails, the database is left unchanged

• It should be able to deal with any faults in the middle of a transaction

• If a transaction fails, a client can safely retry

In the NoSQL context:
• Atomicity is still ensured

Consistency
Description
• Ensures that the transaction brings the database from a valid

state to another valid state

• All university staff is paid at the end of month

• It is a property of the application, not of the database

In the NoSQL context:
• Consistency is (often) not discussed

Durability
Description
• Ensures that once a transaction has committed successfully,

data will not be lost

• Even if a server crashes (flush to a storage device, replication)

In the NoSQL context:
• Durability is also ensured

Isolation
Description
• Concurrently executed transactions are isolated from each other

• We need to deal with concurrent transactions that access the same
data

• Serializability

• High level of isolation where each transaction executes as if the

transactions are applied serially, one after the other

In the NoSQL context:
• Let us have a look at the CAP theorem

The CAP "Theorem" (E. Brewer, 2000)
3 properties of databases

Consistency
• What guarantees do we have on the value returned by a read

operation?

• It strongly relates to Isolation in ACID (and not to consistency)

Availability
• The system should always accept updates

Partition tolerance
• The system should be able to deal with a partitioning of the network

The CAP Theorem Statement
It is impossible to have a system that provides Consistency,
Availability, and Partition tolerance at the same time.
Partitioning (failures) are inevitable in a large scale distributed
setting => need to choose between availability and consistency
In the CAP theorem:

• Consistency is meant as serializability (the strongest
consistency guarantee)

• Availability is meant as total availability

In practice, different trade-offs can be provided

The Intuition Behind CAP

The impact of CAP on ACID for NoSQL
The main consequence

• No NoSQL database with strong Isolation

The other ACID properties?

• Atomicity

• Each side should ensure atomicity

• Durability

• Should never be compromised

Key-Value Store
• Data are stored as key-value pairs

• The value can be a data structure (eg, a list)

• In general, only support  

single-object transactions

• In this case, key-value pairs

• Examples:

• Redis

• Amazon DynamoDB

• Use cases

• Scalable cache for data

• Client sessions

• ...

• Note that some solutions ensure durability by writing data to disk

Image by J. Stolfi

Column Family Stores
• Data are organized in rows and columns (Tabular data store)

• The data are arranged based on the rows

• Column families are defined by users to improve performance

• The idea is to group related columns together

• Only support single-object transactions

• In this case, a row

• Examples:

• BigTable/HBase

• Cassandra

• Use case:

• Data with some structure with the goal of achieving scalability and high

throughput

• Provide more complex lookup operations than KV stores

Column Family Stores

Note that a row does not need to have entries for all columns

Document Databases
• Data are organized in Key-Document pairs

• A document is a nested structure with embedded metadata

• No definition of a global schema

• Popular formats: XML, JSON

• Only support single-object transactions

• In this case, a document or a field inside a document

• Examples:

• MongoDB

• CouchDB

• Use case:

• An alternative to relational databases for structured data

• Offer a richer set of operations compared to KV stores:

• Update, Find, etc.

Document Databases

Graph Databases Graph DB: Neo4j
• Rich data format

• Query language as pattern matching

• Limited scalability: replication to scale reads, writes need to be done to

every replica

Relationships in Data
• Many-to-one

• Example: Many people went to the same university

• One-to-Many: An item may have several entries of the same

kind

• Example: One person may have had several positions during her career

• Document DB allow storing such information easily and allow simple

read operations

• Many-to-Many

• Example: Several persons may have worked in the same company.

• Graph DB

Many-to-One 
Relational vs Document DB
Relational databases use a foreign key
• Consistency and low memory footprint (normalization)

• Easy updates and support for joins

• Difficult to scale

Document databases duplicate data
• Efficient read operations

• Easy to scale

• Higher memory footprint and updates are more difficult (risk of

consistency issues)

• Transactions on multiple objects could be very useful in this case

• Join operations have to be implement by the application

Google BigTable
• Column family data store

• Data storage system used by many Google services:

Youtube,Google maps, Gmail, etc.

• Paper published by Google in 2006 (F. Chang et al)

• Now available as a service on Google Cloud

• Many ideas reused in other NoSQL databases

Motivations
• A system that can store very large amounts of data

• TB or PB of data

• A very large number of entries

• Small entries (each entry is an array of bytes)

• A simple data model

• Key-value pairs (A key identifies a row)

• Multi-dimensional data

• Sparse data

• Data are associated with timestamps

• Works at very large scale

• Thousands of machines

• Millions of users

About the Data Model
• Rows are identified by keys (arbitrary strings)

• Modifications on one row are atomic

• Rows are maintained in lexicographic order

• Columns are grouped in columns families

• Columns can be sparse

• Clients can ask to retrieve a column family for one row

• Each cell can contain multiple versions indexed by a timestamp

• Assigned by BigTable or by the client

• Most recent versions are accessed first

• GC politics: Keep last n versions or Keep all new-enough versions

About the Data Model

Building Blocks of BigTable
• A master

• Assign tables parts (tablets) to servers

• With the help of a locking service

• Tablet servers

• Store the tables (divided in tablets)

• Process client requests

• Tablets

• Stored as SSTables (Sorted String Tables)

• Stored in the Google File System for durability

Implementation of Tablets

Write Operation

• Data stored in memory (Memtable)

• Any update is written to a commit log on GFS for durability

• The log is shared between all hosted tablets

• Periodic writes to disk

• When the Memtable becomes too big:

• Copied as a new SSTable to GFS

• Multiple SSTables are created if locality groups are defined (based on column families)

• Reduces the memory footprint and reduces the amount of work to do during recovery

• SSTables are immutable (no problem of concurrency control)

Read Operation
• The state of the tablet = the Memtable + all SSTables

• A merged view needs to be created

• The Memtable and the SSTables may contain delete operations

• Locality groups help improving the performance of read
operations

• Major compaction

• When the number of SSTables becomes too big, merge them into a

single SSTable

• Allow reclaiming resources for deleted data

• Improve the performance of read operations

Bloom Filters and Reads
• During a read operation, potentially several SSTables need to be

read

• How to avoid reading all SSTables when not needed?

• Use of Bloom filters (1970 !)

• Data structure that allows us to know if a SStable contains an entry for a

given key-column pair

• Bloom filter

• Implements a membership function (is X in the set?)

• If the bloom filter answers no: it is guaranteed that X is not present

• If the bloom filter answers yes: the element is in the set with a high

probability

• Good trade-off between accuracy and memory footprint

Apache Cassandra
• Column family data store

• Paper published by Facebook in 2010 (A. Lakshman and P.

Malik)

• Used for implementing search functionalities

• Released as open source

• Build on top of several ideas introduced by BigTable

• Warning: Many changes in the design have been made since the first

version of Cassandra

Partioning in Cassandra
Ideas from DHT = Distributed Hash Tables

Lectures of Prof. Jussi Kangasharju,  
http://www.cs.helsinki.fi/u/jakangas/

Partioning in Cassandra
Partitioning based on a hashed name space
• Data items are identified by keys

• Data are assigned to nodes based on a hash of the key

• Tries to avoid hot spots

Namespace represented as a ring
• Allows increasing incrementally the size of the system

• Each node is assigned a random identifier

• Defines the position of a node in the ring

• The nodes is responsible for all the keys in the range between its

identifier and the one of the previous node.

Partioning in Cassandra
• Limits : High risk of imbalance

• Some nodes may store more keys than others

• Nodes are not necessarily well distributed on

the ring, especially true with a low number of
nodes

• Issues when nodes join or leave the system

• When a node joins, it gets part of the load of its

successor

• When a node leaves, all the corresponding

keys are assigned to the successor

Partitioning and Virtual Nodes
• Concept of virtual nodes

• Assign multiple random

positions to each node

http://www.cs.helsinki.fi/u/jakangas/

Partitioning and Replication
Items are replicated for fault tolerance.

• Simple strategy

• Place replicas on the next R nodes in the ring

• Topology-aware placement

• Iterate through the nodes clockwise until finding a node meeting the
required condition

• For example a node in a different rack

Replication in Cassandra
Replication is based on quorums
• A read/write request might be sent to a subset of the replicas

• To tolerate f faults, it has to be sent to f + 1 replicas

• Consistency

• The user can choose the level of consistency

• Trade-off between consistency and performance (and availability)

• Eventual consistency

• If an item is modified, readers will eventually see the new value

Consistency Levels
ONE (default level)
• The coordinator waits for one ack on write before answering the client

• The coordinator waits for one answer on read before answering the client

• Lowest level of consistency

• Reads might return stale values

• We will still read the most recent values in most cases

QUORUM
• The coordinator waits for a majority of acks on write before answering the client

• The coordinator waits for a majority of answers on read before answering the

client

• High level of consistency

• At least one replica will return the most recent value

References

• Bigtable: A Distributed Storage System for Structured Data., F.
Chang et al., OSDI, 2006.

• Cassandra: a decentralized structured storage system ., A.
Lakshman et al., SIGOPS OS review, 2010.

• http://martin.kleppmann.com/2015/05/11/ please-stop-calling-
databases-cp-or-ap.html, M. Kleppmann, 2015.

• https://jvns.ca/blog/2016/11/19/ a-critique-of-the-cap-
theorem/,  
J. Evans, 2016.

References
• Lecture notes of V.Leroy

• Lecture notes of F.Zanon Boito

• Lecture notes of T.Ropars

• Lecture notes of B. Groz

• Designing Data-Intensive Applications by Martin Kleppmann

• Chapters 2 and 7

