
Silviu Maniu, LIG, Univ. Grenoble Alpes

Large Scale Data 
Management
Graph Stores, Neo4J

Large-Scale Data Management

Introduction

2025

Silviu Maniu, LIG, Univ. Grenoble Alpes

1/37

Graph Data

Graphs correspond to a natural organization of knowledge


They generalize


• Relations


• Trees (documents)


• Key-value pairs


Graph stores simplify / facilitate data representation


They do not simplify query evaluation (and may make it more 
complex)

Graphs

Data model: G(V,E) edges E between vertices V 


Edges can be: directed vs. undirected, weighted vs. unweighted 


Nodes/vertices can be:


• Unlabelled


• Having a single label or type


• Set of attribute-value pairs (property graphs)


Graph can have semantics (RDF, knowledge graphs)

Graphs



Social Networks
Example Graphs

Edges: persons, nodes: relationshipsExample: Web Social Networks

by Michael Coghlan, CC BY-SA !." via Flickr

#/$#

Road Networks
Example GraphsQueries over graphs – routing in road graphs

Data: graphs are annotated with distances (time, physical distance)

Queries: distance between two nodes, nodes being at most at a given
distance from a source node

Algorithms: the classic Dijkstra’s algorithm, with optimizations for quick
answers (contraction hierarchies) – linear in the size of the graph

2/43

Edges: roads/connections, nodes: intersections/cities/etc.

Knowledge Graphs / Semantic Data
Example Graphs

Edges: subjects/objects, nodes: predicates
RDF: Data model for (originally) data interchange on the Web


Structured in triples: (subject, predicate, object)


Graph: triples form a directed, labeled/typed, graph


Nodes: are generally URIs allowing to address everything


Schemas: RDF schema (RDFS), OWL

RDF
Graph Data Models



Nodes: entities / objects / concepts


Edges: directed relationships between nodes


Properties: key-values pairs to nodes/edges (name: "Alice")


Labels: edge/node types

Property Graphs
Graph Data Models

Graphs and algorithms on graphs are important:


• classic algorithms: shortest paths, community detection, 
counting triangles, PageRank


• data mining/machine learning on graphs: collaborative 
filtering, belief propagation, mean-field algorithms, graph 
neural networks


• querying: matching patterns / paths on graphs

Graphs and Algorithms

Challenges in efficiently processing graph algorithms:


• locality issues: since different vertices are needed


• little work per vertex: some vertices may not be used at all


• parallelism is not the same everywhere


MapReduce, Spark are data parallel: very efficient for tabular data, 
aggregating data – not the case for graphs

Distributing Graph Computation
Graphs and Algorithms

Graph Parallel: computation in each vertex
Graph Parallel vs. Data Parallel

Data-Parallel Graph-Parallel

Dependency Graph

6. Before

8. After

7. After

 

Table

Result

Row

Row

Row

Row

Separate Systems to Support Each View




Implements a variant of the Bulk Synchronous Processing model


Computation Model 

1. input: each vertex in the graph receives initial data


2. supersteps with global synchronization points


• each vertex receives the same user-defined function to execute in a 
superstep


• between supersteps, messages are sent between vertices (either via 
links, or globally)


• in a superstep, each vertex can modify its state, and set-up a 
message to be sent to other vertices


• vertices can vote to halt the computation; if they receive new 
messages they must re-activate


3. computation stops when all vertices vote to halt and are not reactivated

Graph Processing with Pregel
Vertex Processing with Pregel – Max Value Example and API

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()
method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum
aggregator applied to the out-degree of each vertex yields the

137

from [Malewicz et al., 2010]

9/21

Graph Stores: Neo4J

Neo4J uses a property graph data model (directed, labeled, key-
value properties)

Property Graphs
Neo4J Model

Data Manipulation Language
Neo4J Model

Data manipulation language (CRUD): Cypher, used to describe data and patterns to be matched


Node descriptions in Cypher:


()   - empty anonymous node


(matrix)  - node whose identifier is matrix. 


(:Movie)  - node of type Movie


(matrix:Movie)   - node whose ID is matrix and type Movie


(matrix:Movie {title: "The Matrix"})   
            - node with an attribute


(matrix:Movie {title: "The Matrix", released: 1997})  
           - node with two attributes




Data Manipulation Language
Neo4J Model

Relationship descriptions in Cypher:


-- (undirected) vs. --> or <-- (directed)  

Sample relationship descriptions:


-->  

-[role]->    - relationship ID


-[:ACTED_IN]->   - relationship type 

-[role:ACTED_IN]->  

-[role:ACTED_IN {roles: ["Neo"]}]->  

-relationship with attributes

On-disk database in files:


• nodestore – node related data


• relationship – relationship related data


• property – properties (key/value)


• label - (for indexes) index related label data


Schema-less: fixed record size for quick random access (via offsets), 
stored on disk but cached in memory


Optimized for graph traversal = linked list, every node and relationship 
has pointers to the first in the chain

Database Organisation
Neo4J Architecture

Transaction control is ACID when one server


• Write-ahead logs (WAL) for recovery - records the transaction log


Distribution/clustering, servers dealing with one or more databases:


• Primary mode: for safety and transaction control


• Secondary mode: for scalability and read performance


When clustering


• Causal consistency: each client writing to a primary server is 
guaranteed to read the same data from a secondary server

Transaction Control, Clustering
Neo4J Architecture Data Manipulation with Cypher

Patterns combine node and relationship descriptors:


(keanu:Person:Actor {name: "Keanu Reeves"} )  
-[role:ACTED_IN {roles: ["Neo"] } ]-> 
(matrix:Movie {title: "The Matrix"} ) 

Data creation: 


CREATE (a:Person { name:"Tom Hanks", born:1956 }) 
-[r:ACTED_IN { roles: ["Forrest"]}]-> (m:Movie 
{ title:”Forrest Gump",released:1994 })  

 
CREATE (d:Person { name:"Robert Zemeckis", 
born:1951 }) -[:DIRECTED]->(m)



Querying with Cypher

MATCH pattern RETURN matched variables


MATCH (p:Person { name:"Tom Hanks" }) 
               -[r:ACTED_IN]->(m:Movie)  
RETURN m.title, r.roles 

Successive match-create-return steps can be used to update the data:


MATCH (p:Person { name:"Tom Hanks" })  
CREATE (m:Movie { title:”Cloud 
Atlas",released:2012 })  
CREATE (p)-[r:ACTED_IN { roles: ['Zachry']}]->(m)  
RETURN p,r,m 

Querying with Cypher

Inserting data only if it didn't exist:


MERGE (m:Movie { title:"Cloud Atlas" })  
  // create or check the existence of movie node m 
ON CREATE SET m.released = 2012   
  // if we had to create it, set the release year 

RETURN m 

Insert relationship only if it did not exist: 


MATCH (m:Movie { title:"Cloud Atlas" })  
MATCH (p:Person { name:"Tom Hanks" })  
MERGE (p)-[r:ACTED_IN]->(m)  
ON CREATE SET r.roles =['Zachry']  

RETURN p,r,m

Returning Results
Querying with Cypher

MATCH (a { name: "A" })-[r]->(b) 

RETURN * //all results, all properties of a,r,b 

MATCH (n)  
RETURN n.age // returns null if no age 

MATCH (a { name: "A" })  

RETURN a.age > 30, "I'm a literal”,(a)—>() //edge 
creation

Other Cypher Functionalities

• Boolean conditions: 


MATCH (n)  

WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = "Tobias") OR 
NOT (n.name = "Tobias" OR n.name="Peter")  

RETURN n 

• Optional matching: somewhat like outer joins, replace missing with NULL 

• Returned data can be: ordered, truncated, aggregated


• Unwind: unfolds a collection into a set UNWIND[1,2,3] AS x RETURN x // three 
results


• Indexes: CREATE INDEX ON :Person(name) 

• EXPLAIN to get the query plan, PROFILE to measure the effort



Search performance (automatically used if present):


• Range: default, B+ trees


• Text and Point: for string and coordinate operations


• Lookup: only for node label and relationship type (activated by 
default)


Semantic indexes (not automatically used):


• Full-text: search for content, via Apache Lucene


• Vector: similarity search via embeddings

Query Perfomance via Indexes
Neo4J Architecture

• Very convenient data model, natural representation


• Typically no strict schema


• No standard query language (effort to extend Cypher to standard, GQL)


• Knowledge graphs are a particular case (RDF and SPARQL are 
standards)


• Other powerful tools around: distributed graph stores (Pregel, Spark 
GraphX)


‣ Extra dimension: graph partitioning 


‣ Less effort on query language; in progress

Query Perfomance via Indexes
Summary

Articles


• Malewicz et al., Pregel: a system for large-scale graph processing, 
SIGMOD 2010


• Rodriguez, Neubauer, Constructions from Dots and Lines, Bul. 
Am. Soc. Info. Sci. Tech. 36(6), 2010


• Francis et al., Cypher: An Evolving Query Language for Property 
Graphs, SIGMOD 2018


Documentation


• Neo4J: https://neo4j.com/docs/, Cypher: https://neo4j.com/docs/
cypher/

To Read Further

https://neo4j.com/docs/
https://neo4j.com/docs/cypher/
https://neo4j.com/docs/cypher/

