‘‘‘‘‘‘‘‘‘
............

UCA NP Ensimag
IM?AG vea

Large Scale Data
Management

Graph Stores, Neo4J

Silviu Maniu, LIG, Univ. Grenoble Alpes

Graph Data

Graphs

Graphs correspond to a natural organization of knowledge
They generalize

* Relations

* Trees (documents)

* Key-value pairs
Graph stores simplify / facilitate data representation

They do not simplify query evaluation (and may make it more
complex)

Graphs

Data model: G(V,E) edges E between vertices V
Edges can be: directed vs. undirected, weighted vs. unweighted
Nodes/vertices can be:

* Unlabelled

* Having a single label or type

» Set of attribute-value pairs (property graphs)

Graph can have semantics (RDF, knowledge graphs)

Example Graphs
Social Networks

Edges: persons, nodes: relationships

by Michael Coghlan, CC BY-SA 2.0 via Flickr

Example Graphs
Road Networks

Edges: roads/connections, nodes: intersections/cities/etc.

Example Graphs
Knowledge Graphs / Semantic Data

Edges: subjects/objects, nodes: predicates

Graph Data Models

RDF

RDF: Data model for (originally) data interchange on the Web
Structured in triples: (subject, predicate, object)

Graph: triples form a directed, labeled/typed, graph

Nodes: are generally URIs allowing to address everything

Alice

Schemas: RDF schema (RDFS), OWL @

Person 14 July 1990

Graph Data Models

Property Graphs

Nodes: entities / objects / concepts
Edges: directed relationships between nodes

Properties: key-values pairs to nodes/edges (name: "Alice")

BROTHER_OF

Labels: edge/node types

SISTER_OF

since: 10/jan/11
DRIVES DRIVES
since: 15/Mar/13 Since: 10/Jan/11

Car
Brand: Volvo

Graphs and Algorithms

Graphs and algorithms on graphs are important:

* classic algorithms: shortest paths, community detection,
counting triangles, PageRank

» data mining/machine learning on graphs: collaborative
filtering, belief propagation, mean-field algorithms, graph
neural networks

* querying: matching patterns / paths on graphs

Graphs and Algorithms

Distributing Graph Computation

Challenges in efficiently processing graph algorithms:
* locality issues: since different vertices are needed
* little work per vertex: some vertices may not be used at all
 parallelism is not the same everywhere

MapReduce, Spark are data parallel: very efficient for tabular data,
aggregating data — not the case for graphs

Graph Parallel vs. Data Parallel

Graph Parallel: computation in each vertex

Data-Parallel

& lEnlEEm
K

Graph-Parallel

Pr ge\—

Dependency Graph

Graph Processing with Pregel

G 0
Implements a variant of the Bulk Synchronous Processing model @
Computation Model

O OS0=0

1. input: each vertex in the graph receives initial data

2. supersteps with global synchronization points @

each vertex receives the same user-defined function to execute in a
superstep

between supersteps, messages are sent between vertices (either via
links, or globally)

in a superstep, each vertex can modify its state, and set-up a
message to be sent to other vertices

vertices can vote to halt the computation; if they receive new
messages they must re-activate

3. computation stops when all vertices vote to halt and are not reactivated

Superstep 0

Superstep 1

Superstep 2

Superstep 3

Graph Stores: Neo4J

Neo4J Model

Property Graphs

Neo4dJ uses a property graph data model (directed, labeled, key-

value properties)

Neo4J Model

Data Manipulation Language

Data manipulation language (CRUD): Cypher, used to describe data and patterns to be matched
Node descriptions in Cypher:

() -empty anonymous node

(matrix) - node whose identifier is matrix.

(:Movie) - node of type Movie

(matrix:Movie) - node whose ID is matrix and type Movie

(matrix:Movie {title: "The Matrix"})
- node with an attribute

(matrix:Movie {title: "The Matrix", released: 1997})
- node with two attributes

Neo4J Model

Data Manipulation Language

Relationship descriptions in Cypher:
-- (undirected) vs. --> or <-- (directed)
Sample relationship descriptions:
-—>
-[role]l-> - relationship ID
-[:ACTED_IN]-> - relationship type
-[role:ACTED IN]->
-[role:ACTED IN {roles: ["Neo"]}]->

-relationship with attributes

Neo4J Architecture

Database Organisation

On-disk database in files:
* nodestore — node related data
e relationship - relationship related data
e property — properties (key/value)
e label - (for indexes) index related label data

Schema-less: fixed record size for quick random access (via offsets),
stored on disk but cached in memory

Optimized for graph traversal = linked list, every node and relationship
has pointers to the first in the chain

Neo4J Architecture

Transaction Control, Clustering

Transaction control is ACID when one server

* Write-ahead logs (WAL) for recovery - records the transaction log
Distribution/clustering, servers dealing with one or more databases:

* Primary mode: for safety and transaction control

» Secondary mode: for scalability and read performance
When clustering

» Causal consistency: each client writing to a primary server is
guaranteed to read the same data from a secondary server

Data Manipulation with Cypher

Patterns combine node and relationship descriptors:

(keanu:Person:Actor {name: "Keanu Reeves"})
-[role:ACTED IN {roles: ["Neo"] }]->
(matrix:Movie {title: "The Matrix"})

Data creation:
CREATE (a:Person { name:"Tom Hanks", born:1956 })

-[r:ACTED IN { roles: ["Forrest"]}]-> (m:Movie
{ title:”Forrest Gump",released:1994 })

CREATE (d:Person { name:"Robert Zemeckis",
born:1951 }) -[:DIRECTED]->(m)

Querying with Cypher

MATCH pattern RETURN matched variables

MATCH (p:Person { name:"Tom Hanks" })
-[r:ACTED IN]->(m:Movie)
RETURN m.title, r.roles

Successive match-create-return steps can be used to update the data:

MATCH (p:Person { name:"Tom Hanks" })

CREATE (m:Movie { title:”Cloud
Atlas",released:2012 })

CREATE (p)-[r:ACTED IN { roles: ['Zachry']}]->(m)
RETURN p,r,m

Querying with Cypher

Inserting data only if it didn't exist:

MERGE (m:Movie { title:"Cloud Atlas" })

// create or check the existence of movie node m
ON CREATE SET m.released = 2012

// if we had to create it, set the release year

RETURN m

Insert relationship only if it did not exist:

MATCH (m:Movie { title:"Cloud Atlas" })
MATCH (p:Person { name:"Tom Hanks" })
MERGE (p)-[r:ACTED IN]->(m)

ON CREATE SET r.roles =['Zachry']

RETURN p,r,m

Querying with Cypher

Returning Results

MATCH (a { name: "A" })-[r]->(b)

RETURN * //all results, all properties of a,r,b

MATCH (n)
RETURN n.age // returns null if no age

MATCH (a { name: "A" })

RETURN a.age > 30, "I'm a literal”, (a)—>() //edge
creation

Other Cypher Functionalities

Boolean conditions:

MATCH (n)

WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = "Tobias") OR
NOT (n.name = "Tobias" OR n.name="Peter"

RETURN n

Optional matching: somewhat like outer joins, replace missing with NULL

Returned data can be: ordered, truncated, aggregated

Unwind: unfolds a collection into a set UNWIND[1,2,3] AS x RETURN x // three
results

Indexes: CREATE INDEX ON :Person (name)

EXPLAIN to get the query plan, PROFILE to measure the effort

Neo4J Architecture

Query Perfomance via Indexes

Search performance (automatically used if present):
* Range: default, B+ trees
» Text and Point: for string and coordinate operations

* Lookup: only for node label and relationship type (activated by
default)

Semantic indexes (not automatically used):
 Full-text: search for content, via Apache Lucene

» Vector: similarity search via embeddings

Summary

Query Perfomance via Indexes

* Very convenient data model, natural representation
» Typically no strict schema
» No standard query language (effort to extend Cypher to standard, GQL)

« Knowledge graphs are a particular case (RDF and SPARQL are
standards)

» Other powerful tools around: distributed graph stores (Pregel, Spark
GraphX)

> Extra dimension: graph partitioning

> Less effort on query language; in progress

To Read Further

Articles

* Malewicz et al., Pregel: a system for large-scale graph processing,
SIGMOD 2010

* Rodriguez, Neubauer, Constructions from Dots and Lines, Bul.
Am. Soc. Info. Sci. Tech. 36(6), 2010

* Francis et al., Cypher: An Evolving Query Language for Property
Graphs, SIGMOD 2018

Documentation

* Neo4J: https://neodj.com/docs/, Cypher: https://neodj.com/docs/
cypher/

https://neo4j.com/docs/
https://neo4j.com/docs/cypher/
https://neo4j.com/docs/cypher/

