
Silviu Maniu, LIG, Univ. Grenoble Alpes

Large Scale Data 
Management
Vector Databases

Large-Scale Data Management

Introduction

2025

Silviu Maniu, LIG, Univ. Grenoble Alpes

1/37

1

Vectors as Data

2

Semantic vs. Keyword 
Search

Application: take a photo -> search similar 
products


• Keyword search, SELECT FROM ... WHERE : 
need to define first the features  (how?)


• Even if the feature are known, what we want 
is Semantic search ("close enough")vs. 
Keyword search (exact match)

VISUAL PRODUCT SEARCH
• Take photo → find matching product
• General idea:

• Extract feature vectors (embeddings) from product images
• Store in some DB
• At runtime: extract image features
• … then find nearest neighbours

• Example: JD.com [Li, Middleware’18]
• 100B products, 1B daily updates
• Requirement: support fast update
• Requirement: query fresh data

Extract

Extract

query

Moshe Gabel, CSC2233 Topics in Vector Databases 2

3

Vectors / Embeddings
Main idea: transform (embed) unstructured data (images, 
videos, etc.) into a metric space  so that similar data are 
close together into that space


• Closeness can be measure by distances: Euclidean, Cosine

ℝd

The Emerge of AI & Embeddings

• Used by search engines, recommender systems, 
personalized ads, etc. 

4

Embeddings

4



Queries in Vector Space

Query model: find most similar / closest vector 


• Example query: "That is a happy person"

Vector Similarity Search

• “That is a happy person” How? Calculate the distance (ex. Cosine Similarity)

Goal: Find most similar vector to the query• 3 semantic vectors = Search Space

• “today is a sunny day”

• “that is a very happy person”

• “that is a very happy dog”

• 1 Semantic vector = Query

Acknowledgement: Slides taken from Sam Partee, Applied AI

Vector Similarity Search

• “That is a happy person” How? Calculate the distance (ex. Cosine Similarity)

Goal: Find most similar vector to the query• 3 semantic vectors = Search Space

• “today is a sunny day”

• “that is a very happy person”

• “that is a very happy dog”

• 1 Semantic vector = Query

Acknowledgement: Slides taken from Sam Partee, Applied AI

Cosine similarity

5

Applications: 
Recommender Systems

Input: user, Output: recommend items


• Create vectors for products


• Create query vector q for user preference


• Find products close to q


Requirements: high throughput, good accuracy

Vector Similarity Search

• “That is a happy person” How? Calculate the distance (ex. Cosine Similarity)

Goal: Find most similar vector to the query• 3 semantic vectors = Search Space

• “today is a sunny day”

• “that is a very happy person”

• “that is a very happy dog”

• 1 Semantic vector = Query

Acknowledgement: Slides taken from Sam Partee, Applied AI

6

Applications: Retrieval 
Augmented Generation in LLMs

Input: user prompt, Output: generated answer


• Documents kept as vectors 


• The prompt (transformed to a vector) is the query, 
search for enriched context (similar documents)


• Initial prompt + context : augmented prompt

Context retrieval

• Description
• Vector database is used as an external 

knowledge base for the large language model.

• Queries are used to detect similar information 
(context) within the knowledge base

• Benefits
• Cheaper and faster than fine-tuning

• Real-t ime updates to knowledge base

• Sensitive data doesn’t nee d to be used in 
model training or fine tuning

• Use Ca se s
• Document discovery and analysis

• Chatbots

Acknowledgement: Slides taken from Sam Partee, Applied AI

7

Vector Databases: Basic 
Functionalities

Inserting data:


1. Convert data (text, image, sound, graph) 
into an embedding vector


• Usually using an ML model


2. Store vectors (embeddings) in specialized 
DB


Querying data:


1. Embed query as vector q 

2. Ask DB to find vectors similar to q

COMMON FUNCTIONALITY
Inserting data:
1. Convert data (text, image, sound, graph) into 

an embedding vector
• Usually using an ML model

2. Store vectors (embeddings) in specialized DB
Querying Data:
3. Embed query as vector q
4. Ask DB to find vectors similar to q

Moshe Gabel, CSC2233 Topics in Vector Databases

A database 
for vectors!

model

query

data

reply

12

8



Querying and Storing 
Vectors

Storage problems:


• Ex: 100,000,000,000 documents stored as high dimensional vectors 
(d>1000) -> does not fit in RAM


Querying problems:


• Have to compute 100B floating point operations to get the exact answer


Vector DBs:


• Querying via approximate nearest neighbour (ANN) search


• Storage via indexing / sharding

9

Approximate Nearest 
Neighbour and Indexes

10

Approximate k-Nearest 
Neighbour Search

Problem: Given a query vector q find the k vectors that are 
approximately nearest to q by the distance d(q,v) 

Distances: 


Euclidean , Cosine , Manhattan, etc.


Maximise recall: , where  the ground truth

∥v − q∥2 1 −
q ⋅ v

∥q∥ ∥v∥

V ∩ V*
V*

V*

11

Algorithms for AKNN
Tree based: KD-tree, R-tree


• Run slowly on high-dimensional data


Clustering-based: IVF_FLAT/SQ8/PQ


• High recall, clusters may be update-insensitive


Graph-based: HNSW, NSG, SSG


• High recall, graphs take time/space to maintain


Hash based: LSH (Locality Sensitive Hashing) 

• Run slowly on high-dimensional data

PERFORMANCE TRADEOFFS
• ANNS indexes trade between:

• Search speed
• Accuracy
• Memory
• Build/update cost

• Crucial: search speed-accuracy tradeoff
• Index type + configuration determine specific point

• How to choose index and configuration?
• Tune manually on your data
• Automatically using VDBMS optimizer (if exists)

M. Gabel, CSC2233 Topics in Vector Databases 3

accuracy

performance

exhaustive 
search

HNSW 
M=20, ef=32

IVF n=1024

IVF n=64
SQ bits=4

SQ bits=16

(illustration only, not real data)

12



IVF_FLAT / SQ8 / PQ

Cluster data -> find closest cluster -> search in cluster: 
brute force (FLAT), compressed (SQ8), quantisation (PQ)

IVF_FLAT/SQ8/PQ

• Search in each cluster:  brut force (FLAT) vs. 
compressed (SQ8) vs. quantization of subvectors (PQ)

10

13

IVF_FLAT Index

Data is kept in codebooks per cluster, each has access 
to the pages containing vectors


• May miss nearest neighbours in close clusters!

Index Building (IVF_FLAT)

• Each page is the unit of buffering and searching 

18

14

Hierarchical Navigable 
Small Worlds

State-of-the-art in indexes 

Combines two ideas:


1. Traversal in a graph


2. Hierarchical Skips

HNSW   [MALKOV, TPAMI’20]

• Hierarchically Navigable Small Worlds
• Crown jewel of ANN indexes

• Near SotA speed-accuracy tradeoff
• Available quality implementations
• Used in Qdrant, Weaviate (custom variants)
• … not quite SotA in academia

• Combines two ideas:
1. Navigable Small World:

graph for traversal with greedy search
2. Hierarchical skips:

higher layers allow fast skips

M. Gabel, CSC2233 Topics in Vector Databases 4515

Navigable Small World
Construct a graph by adding short- and long-
range edges, so that path length is 


Greedy search (DFS):


• Start at entry node


• Add neighbors to list


• Go to neighbour nearest to query


• Repeat


Problem: polylogarithmic search time 

𝒪(log N)

𝒪(logC N)

NAVIGABLE SMALL WORLD (NSW)
• Class of graphs:

• Add long- and short-range edges
• Characteristic path length 𝑂 log𝑁

• Greedy search (DFS):
• Start at entry point
• Add its neighbours to candidate list
• Go to candidate nearest to query
• Repeat until no such candidate

• Search path is 𝑂 log𝑁
• Problem: average out-degree 𝑂 log𝑁
→ Polylogarithmic 𝑂(log𝐶 𝑁) search time (𝐶 > 1)

M. Gabel, CSC2233 Topics in Vector Databases 46

query

entry point

nearest
neighbour

16



Skip Lists
Hierarchical search: start at top layer -> search in layer 
-> move to lower if needed

SKIP LIST

SEARCH
• Start at top layer
• Search in current layer.
• When cannot continue, move to lower layer.

INSERT
• Insert to bottom list
• Flip coin, if heads stop. 
• Otherwise, move to higher layer and insert

M. Gabel, CSC2233 Topics in Vector Databases 47

17

HNSW = NSW + Skip List
Hierarchical graphs: replicate nodes across 
layers, long edges at higher layers, short at lower 
layer, bounded out degree


Query:


• Enter at top layer


• Greedy search to nearer


• Move to lower layer


 search!𝒪(log N )

HNSW = NSW + SKIP LIST
• To query:

• Enter at top layer
• Greedy search

• Move to nearest connected neighbour
• Done? Move to lower layer

• Result: 𝑂 log𝑁  search
• Because out-degree bounded

• Improve recall (incurs overhead):
• At layer 0, expand search to efSearch > 1 

neigbours

M. Gabel, CSC2233 Topics in Vector Databases 54

entry point layer 2

layer 1

layer 0

query

18

ANN Implementations
Multiple implementations: FAISS (Meta AI), SPTAG 
(Microsoft), Annoy (Spotify)


Computation is optimised: usually low level 
implementations (C++, uses advance CPU instructions, 
uses GPU)


However:


• Only memory-based


• No dynamic data support, no attribute filtering

19

Vector Database 
Systems

20



Relational vs. Vector
RDBMS         VDBMS

Traditional DB (RDBMS) Vector DB (VDBMS)
Data Records Vectors
Queries Relational algebra Nearest neighbors + simple filtering
Advanced query features Join, group, FK, cursors None of those*
Updates To part of record

To multiple records
On whole vector
Insert/delete/replace

Consistency Strong + transactions Eventual, tunable
Index updates Fast Slow
Storage Row/column based, LSM Vector is opaque blob
Hardware , scaling cost Uniform , moderate Diverse , expensive (GPUs)
Architecture More monolithic More disaggregated

* Never say “never”, but effectively none.

Moshe Gabel, CSC2233 Topics in Vector Databases 36

21

Extended 

• Extend existing DB (relational/NoSQL)


• Examples: pgvector, PASE, Redis, CosmosDB, Timescale


• Keep power of queries: ACID, transactions, SQL,...


• Slower (due to ACID), limited dimension


• Can store original documents also


Native 

• Designed as vector DBs, specialised architecture


• Examples: Chroma, Pinecone, Azure AI Search, Search, ...


• Limited queries: similarity + filter usually


• High performance (ANN implementations)

Types of Vector Databases

22

Adds the vector(dim) type


CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3)); 

INSERT INTO items (embedding) VALUES ('[1,2,3]'), (‘[4,5,6]'); 

Can match using distances

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5; 

• L2 <->, L1 <+>, Cosine <=>, inner product <#>


By default exact embedding search, but can create IVF and HNSW 
indexes


CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

PostgreSQL plugin
pgvector

23

Modes: embedded (py lib), single node (server), distributed


Log 

• Write-ahead log (all writes recorded) for atomicity, replay


Query Executor 

• All read operations: vector similarity, metadata search


Compactor 

• Reads from Log and builds the indexes, writes them to storage


• Updates system metadata about index versions

Native vector DB
ChromaDB

24



Unit of storage: collections (equivalent to tables)


collection.add(ids=["id1"], documents=["cat"], metadatas=[{"color": "orange"}]) 

• Contains: unique id, embedding vector, optional metadata, original document


• Embeddings can be pre-trained (using Python libs such as 
SentenceTransformer), or can define own functions


Query collections


results = collection.query(query_texts=["Query document"], n_results=2) 

• By default, L2 distance; HNSW index (only one supported by Chroma)


• Can provide embeddings directly as query, or even images (multimodal 
search)


• Can query metadata (used as filter in HNSW navigation)

Data Model & Querying
ChromaDB

25

Articles


• Jégou et al. Product Quantization for Nearest Neighbour Search. https://
inria.hal.science/inria-00514462v2/document


• Malkov, Yashunin. Efficient and robust approximate nearest neighbor 
search using Hierarchical Navigable Small World graphs https://arxiv.org/
pdf/1603.09320


Specs and documentation


• ChromaDB: https://docs.trychroma.com/ (example vector DB)


• pgvector: https://github.com/pgvector/pgvector (example vectors on top 
of DBMS)


• FAISS: https://faiss.ai/index.html (example AKNN library)

To Read Further

26

https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://arxiv.org/pdf/1603.09320
https://arxiv.org/pdf/1603.09320
https://docs.trychroma.com/
https://github.com/pgvector/pgvector
https://faiss.ai/index.html

