UCA iNP Ensimag
IMAG 5z, VoA

‘‘‘‘‘‘‘‘

ssssssssssss A

Large Scale Data
Management Vectors as Data

Vector Databases

Silviu Maniu, LIG, Univ. Grenoble Alpes

Semantic vs. Keyword

Search Vectors / Embeddings

:&Zﬁ?:on: take a photo -> search similar \;,‘/t}; N Main idea: transform (embed) unstructured data (images,
f videos, etc.) into a metric space R? so that similar data are
+ Keyword search, SELECT FROM ... WHERE : close together into that space
need to define first the features (how?) 3
) B * Closeness can be measure by distances: Euclidean, Cosine
¢ Even if the feature are known, what we want l » e e

is Semantic search ("close enough")vs. query J Al
Keyword search (exact match) ¢

Embeddings [|

% Results 1: visually similar products

Male-Female

Queries in Vector Space

Query model: find most similar / closest vector

* Example query: "That is a happy person"

st gy s Cosine similarity
0.695
That is a happy dog

N + 0.943
*, Casio Simiarty That is a very happy person

,
H Today is a sunny day
% J—

0.257

Applications:
Recommender Systems
Input: user, Output: recommend items
+ Create vectors for products

* Create query vector q for user preference

* Find products close to g

Requirements: high throughput, good accuracy

Applications: Retrieval
Augmented Generation in LLMs

Input: user prompt, Output: generated answer
* Documents kept as vectors

* The prompt (transformed to a vector) is the query,
search for enriched context (similar documents)

* Initial prompt + context : augmented prompt

@OpenAI Ask Question
o & — &

Q&A Reference Architecture |

nnnnnnnnnnnnnnnnnnnnn

Vector Databases: Basic
Functionalities

Inserting data:

1. Convert data (text, image, sound, graph)
into an embedding vector

* Usually using an ML model \

2. Store vectors (embeddings) in specialized
DB query

Querying data: e
1. Embed query as vector g

2. Ask DB to find vectors similar to g

Querying and Storing
Vectors

Storage problems:

» Ex: 100,000,000,000 documents stored as high dimensional vectors
(d>1000) -> does not fit in RAM

Querying problems:

» Have to compute 100B floating point operations to get the exact answer
Vector DBs:

* Querying via approximate nearest neighbour (ANN) search

» Storage via indexing / sharding

Approximate Nearest
Neighbour and Indexes

Approximate k-Nearest
Neighbour Search

Problem: Given a query vector q find the k vectors that are
approximately nearest to g by the distance d(q,v)

Distances:

q-v

Euclidean ||[v — ¢||,, Cosine] — —————, Manhattan, etc.

lall NIVl

V*
Maximise recall: T where V* the ground truth

Algorithms for AKNN

Tree based: KD-tree, R-tree

* Run slowly on high-dimensional data

3
exhaustive &
Clustering-based: IVF_FLAT/SQ8/PQ seach Qé
,“\.\Mfzuh, ef=32
* High recall, clusters may be update-insensitive ‘\.\ ol
Graph-based: HNSW, NSG, SSG T e &V
@ IVF n=1024

* High recall, graphs take time/space to maintain

performance

Hash based: LSH (Locality Sensitive Hashing)

* Run slowly on high-dimensional data

IVF_FLAT / SQ8 / PQ

[centrPid_1l W
o N 7 ot cIUSﬂ
’ € \. : ‘/’ i P

centroid2

Cluster data -> find closest cluster -> search in cluster:
brute force (FLAT), compressed (SQ8), quantisation (PQ)

IVF_FLAT Index

meta page | PageHeader flatetaPageData | PageTaller

.....

Gion | PagoTaier

7 s ogerat 1 pagec. auta page ot 1 poge 1

.....

of controid 1 [
Ofom | PageTaier Okem | PageTailer
o it

-~ ox o oxi2

| o [[

,
.
om | ova

-
=

- e
oxum quﬂa:m|—- Oysm | PageTaier | ...

Data is kept in codebooks per cluster, each has access
to the pages containing vectors

ta page list
of centroid 2

* May miss nearest neighbours in close clusters!

14

Hierarchical Navigable
Small Worlds

Layer=2

State-of-the-art in indexes

Combines two ideas: Laer=1 ZZX
1. Traversal in a graph *
2. Hierarchical Skips ‘%;

Navigable Small World

Construct a graph by adding short- and long-
range edges, so that path length is O(log N)

Greedy search (DFS):
« Start at entry node

* Add neighbors to list

* Go to neighbour nearest to query .
neares

neighbour

* Repeat

Problem: polylogarithmic search time
O(log® N)

Skip Lists

Hierarchical search: start at top layer -> search in layer
-> move to lower if needed

HNSW = NSW + Skip List

Hierarchical graphs: replicate nodes across
layers, long edges at higher layers, short at lower
layer, bounded out degree

Query:
* Enter at top layer
» Greedy search to nearer

* Move to lower layer

O(log N) search!

ANN Implementations

Multiple implementations: FAISS (Meta Al), SPTAG
(Microsoft), Annoy (Spotify)

Computation is optimised: usually low level
implementations (C++, uses advance CPU instructions,
uses GPU)

However:

* Only memory-based

* No dynamic data support, no attribute filtering

19

Vector Database
Systems

Relational vs. Vector

Traditional DB (RDBMS) Vector DB (VDBMS)

Records Vectors

m Relational algebra Nearest neighbors + simple filtering
Advanced query features Join, group, FK, cursors None of those*

To part of record On whole vector

To multiple records Insert/delete/replace
Strong + transactions Eventual, tunable
Row/column based, LSM Vector is opaque blob

Hardware , scaling cost Uniform , moderate Diverse , expensive (GPUs)
More monolithic More disaggregated

21

Types of Vector Databases

Extended
» Extend existing DB (relational/NoSQL)
* Examples: pgvector, PASE, Redis, CosmosDB, Timescale
* Keep power of queries: ACID, transactions, SQL,...
* Slower (due to ACID), limited dimension
« Can store original documents also
Native
» Designed as vector DBs, specialised architecture
« Examples: Chroma, Pinecone, Azure Al Search, Search, ...
* Limited queries: similarity + filter usually

* High performance (ANN implementations)

pgvector
PostgreSQL plugin

Adds the vector (dim) type
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector (3));
INSERT INTO items (embedding) VALUES ('[1,2,3]1'), (‘[4,5,6]1");

Can match using distances

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
e L2 <->, L1 <+>, Cosine <=>, inner product <#>

By default exact embedding search, but can create IVF and HNSW
indexes

CREATE INDEX ON items USING hnsw (embedding vector 12 ops);

23

ST @ chroma

ChromaDB __,

Native vector DB

Sysob.

Storage]

Modes: embedded (py lib), single node (server), distributed
Log

« Write-ahead log (all writes recorded) for atomicity, replay
Query Executor

« All read operations: vector similarity, metadata search
Compactor

« Reads from Log and builds the indexes, writes them to storage

« Updates system metadata about index versions

24

ChromaDB

Data Model & Querying

Unit of storage: collections (equivalent to tables)
collection.add(ids=["id1l"], documents=["cat"], metadatas=[{"color": "orange"}])

» Contains: unique id, embedding vector, optional metadata, original document

* Embeddings can be pre-trained (using Python libs such as
SentenceTransformer), or can define own functions

Query collections
results = collection.query(query_ texts=["Query document"], n_results=2)
* By default, L2 distance; HNSW index (only one supported by Chroma)

» Can provide embeddings directly as query, or even images (multimodal
search)

» Can query metadata (used as filter in HNSW navigation)

25

To Read Further

Articles

« Jégou et al. Product Quantization for Nearest Neighbour Search. https://
inria.hal.science/inria-00514462v2/document

« Malkov, Yashunin. Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs https://arxiv.org/

pdf/1603.09320

Specs and documentation

« ChromaDB: https://docs.trychroma.com/ (example vector DB)

* pgvector: https://github.com/pgvector/pgvector (example vectors on top
of DBMS)

* FAISS: https://faiss.ai/index.html (example AKNN library)

26

https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://inria.hal.science/inria-00514462v2/document
https://arxiv.org/pdf/1603.09320
https://arxiv.org/pdf/1603.09320
https://docs.trychroma.com/
https://github.com/pgvector/pgvector
https://faiss.ai/index.html

